Serious Games for Stroke Telerehabilitation of Upper Limb - A Review for Future Research
DOI:
https://doi.org/10.5195/ijt.2020.6326Keywords:
Serious games, Stroke, Telerehabilitation, Upper limb, Virtual realityAbstract
Maintaining appropriate home rehabilitation programs after stroke, with proper adherence and remote monitoring is a challenging task. Virtual reality (VR) - based serious games could be a strategy used in telerehabilitation (TR) to engage patients in an enjoyable and therapeutic approach. The aim of this review was to analyze the background and quality of clinical research on this matter to guide future research. The review was based on research material obtained from PubMed and Cochrane up to April 2020 using the PRISMA approach. The use of VR serious games has shown evidence of efficacy on upper limb TR after stroke, but the evidence strength is still low due to a limited number of randomized controlled trials (RCT), a small number of participants involved, and heterogeneous samples. Although this is a promising strategy to complement conventional rehabilitation, further investigation is needed to strengthen the evidence of effectiveness and support the dissemination of the developed solutions.
References
Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A review. NeuroRehabilitation, 25(1), 29-44. https://doi.org/10.3233/NRE-2009-0497
Aminov, A., Rogers, J. M., Middleton, S., Caeyenberghs, K., & Wilson, P. H. (2018). What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. Journal of Neuroengineering and Rehabilitation, 15(1), 29-29. https://doi.org/10.1186/s12984-018-0370-2
Aramaki, A. L., Sampaio, R. F., Reis, A. C. S., Cavalcanti, A., & Dutra, F. (2019). Virtual reality in the rehabilitation of patients with stroke: An integrative review. Arquivos de Neuro-Psiquiatria, 77(4), 268-278. https://doi.org/10.1590/0004-282x20190025
Ayed, I., Ghazel, A., Jaume-I-Capó, A., Moyà-Alcover, G., Varona, J., & Martínez-Bueso, P. (2019). Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology. International Journal of Medical Informatics, 131, 103909-103909. https://doi.org/10.1016/j.ijmedinf.2019.06.016
Barak Ventura, R., Nakayama, S., Raghavan, P., Nov, O., & Porfiri, M. (2019). The role of social interactions in motor performance: feasibility study toward enhanced motivation in telerehabilitation. Journal of Medical Internet Research, 21(5), e12708-e12708. https://doi.org/10.2196/12708
Barrett, N., Swain, I., Gatzidis, C., & Mecheraoui, C. (2016). The use and effect of video game design theory in the creation of game-based systems for upper limb stroke rehabilitation. Journal of Rehabilitation and Assistive Technologies Engineering, 3, 1-16. https://doi.org/10.1177/2055668316643644
Birckhead, B., Khalil, C., Liu, X., Conovitz, S., Rizzo, A., Danovitch, I., Bullock, K., & Spiegel, B. (2019). Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study. JMIR Ment Health, 6(1), e11973. https://doi.org/10.2196/11973
Blacquiere, D., Lindsay, M. P., Foley, N., Taralson, C., Alcock, S., Balg, C., Bhogal, S., Cole, J., Eustace, M., Gallagher, P., Ghanem, A., Hoechsmann, A., Hunter, G., Khan, K., Marrero, A., Moses, B., Rayner, K., Samis, A., Smitko, E., Vibe, M., Gubitz, G., Dowlatshahi, D., Phillips, S., & Silver, F. L. (2017). Canadian Stroke Best Practice Recommendations: Telestroke Best Practice Guidelines Update 2017. International Journal of Stroke, 12(8), 886-895. https://doi.org/10.1177/1747493017706239
Brochard, S., Robertson, J., Médée, B., & Rémy-Néris, O. (2010). What's new in new technologies for upper extremity rehabilitation? Current Opinion in Neurology, 23(6), 683-687. https://doi.org/10.1097/WCO.0b013e32833f61ce
Burdea, G., Kim, N., Polistico, K., Kadaru, A., Grampurohit, N., Roll, D., & Damiani, F. (2019). Assistive game controller for artificial intelligence-enhanced telerehabilitation post-stroke. Assistive Technology: The Official Journal of RESNA, 1-12. https://doi.org/10.1080/10400435.2019.1593260
Burdea, G. C. (2003). Virtual rehabilitation--benefits and challenges. Methods of Information in Medicine, 42(5), 519-523. https://www.ncbi.nlm.nih.gov/pubmed/14654886
Burdea, G. C., Grampurohit, N., Kim, N., Polistico, K., Kadaru, A., Pollack, S., Oh-Park, M., Barrett, A. M., Kaplan, E., Masmela, J., & Nori, P. (2019). Feasibility of integrative games and novel therapeutic game controller for telerehabilitation of individuals chronic post-stroke living in the community. Topics in Stroke Rehabilitation, 1-16.
https://doi.org/10.1080/10749357.2019.1701178
Burke, J. W., McNeill, M. D. J., Charles, D. K., Morrow, P. J., Crosbie, J. H., & McDonough, S. M. (2009). Optimising engagement for stroke rehabilitation using serious games. The Visual Computer, 25(12), 1085. https://doi.org/10.1007/s00371-009-0387-4
Calabrò, R. S., Naro, A., Russo, M., Leo, A., De Luca, R., Balletta, T., Buda, A., La Rosa, G., Bramanti, A., & Bramanti, P. (2017). The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. Journal of Neuroengineering and Rehabilitation, 14(1), 53-53. https://doi.org/10.1186/s12984-017-0268-4
Castelnuovo, G., Giusti, E. M., Manzoni, G. M., Saviola, D., Gatti, A., Gabrielli, S., Lacerenza, M., Pietrabissa, G., Cattivelli, R., Spatola, C. A. M., Corti, S., Novelli, M., Villa, V., Cottini, A., Lai, C., Pagnini, F., Castelli, L., Tavola, M., Torta, R., … Tamburin, S. (2016). Psychological treatments and psychotherapies in the neurorehabilitation of pain: Evidences and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation. Frontiers in Psychology, 7, 115-115. https://doi.org/10.3389/fpsyg.2016.00115
Chen, J., Jin, W., Zhang, X. X., Xu, W., Liu, X. N., & Ren, C. C. (2015a). Telerehabilitation approaches for stroke patients: Systematic review and meta-analysis of randomized controlled Trials. Journal of Stroke and Cerebrovascular Diseases, 24(12), 2660-2668. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.014
Chen, J., Jin, W., Zhang, X. X., Xu, W., Liu, X. N., & Ren, C. C. (2015b). Telerehabilitation approaches for stroke patients: Systematic review and meta-analysis of randomized controlled trials. (1532-8511 (Electronic)).
Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., & Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International Journal of Medical Informatics, 123, 11-22. https://doi.org/10.1016/j.ijmedinf.2018.12.001
Chen, Y. A.-O., Chen, Y., Zheng, K., Dodakian, L., See, J., Zhou, R., Chiu, N., Augsburger, R., McKenzie, A., & Cramer, S. C. (2020). A qualitative study on user acceptance of a home-based stroke telerehabilitation system. Topics in Stroke Rehabilitation, 27(2), 81-92. https://doi.org/https://doi.org/10.1080/10749357.2019.1683792
Chiu, Y. H., Chen, T. W., Chen, Y. J., Su, C. I., Hwang, K. S., & Ho, W. H. (2018). Fuzzy logic-based mobile computing system for hand rehabilitation after neurological injury. Technology and Health Care, 26(1), 17-27. https://doi.org/10.3233/thc-171403
Choi, Y.-H., & Paik, N.-J. (2018). Mobile game-based virtual reality program for upper extremity stroke rehabilitation. Journal of Visualized Experiments: JoVE(133), 1-8. https://doi.org/10.3791/56241
Covarrubias, M., Bordegoni, M., Rossini, M., Guanziroli, E., Cugini, U., & Molteni, F. (2015). VR system for rehabilitation based on hand gestural and olfactory interaction. https://doi.org/10.1145/2821592.2821619
de Morton, N. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. The Australian Journal of Physiotherapy, 55, 129-133. https://doi.org/10.1016/S0004-9514(09)70043-1
Dias, P., Silva, R., Amorim, P., Lains, J., Roque, E., Pereira, I. S. F., Pereira, F., Santos, B. S., & Potel, M. (2019). Using virtual reality to increase motivation in poststroke rehabilitation. IEEE Computer Graphics snd Applications, 39(1), 64-70. https://doi.org/10.1109/MCG.2018.2875630
Ding, W. L., Zheng, Y. Z., Su, Y. P., & Li, X. L. (2018). Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study. Journal of Back and Musculoskeletal Rehabilitation, 31(4), 611-621. https://doi.org/10.3233/bmr-140203
Fluet. G. G. (2016). Telerehabilitation upper extremity for neurological disorders. https://clinicaltrials.gov/show/NCT02764372. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01558041/full
Fluet, G. G. (2019). Utilizing gaming mechanics to optimize telerehabilitation adherence in persons with stroke. https://clinicaltrials.gov/show/NCT03985761. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01945516/full
Fluet, G. G., Merians, A. S., Qiu, Q., Lafond, I., Saleh, S., Ruano, V., Delmonico, A. R., & Adamovich, S. V. (2012). Robots integrated with virtual reality simulations for customized motor training in a person with upper extremity hemiparesis: A case study. Journal of Neurologic Physical Therapy, 36(2), 79-86. https://doi.org/10.1097/NPT.0b013e3182566f3f
Fluet, G. G., Qiu, Q., Patel, J., Cronce, A., Merians, A. S., & Adamovich, S. V. (2019). Autonomous use of the home virtual rehabilitation system: A feasibility and pilot study. Games for Health Journal, 8(6), 432-438. https://doi.org/10.1089/g4h.2019.0012
Garrett, B., Taverner, T., Gromala, D., Tao, G., Cordingley, E., & Sun, C. (2018). Virtual Reality clinical research: Promises and challenges. JMIR Serious Games, 6(4), e10839-e10839. https://doi.org/10.2196/10839
Gauthier, L. V., Kane, C., Borstad, A., Strahl, N., Uswatte, G., Taub, E., Morris, D., Hall, A., Arakelian, M., & Mark, V. (2017). Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurology, 17(1), 109. https://doi.org/10.1186/s12883-017-0888-0
Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Borden, W. B., Bravata, D. M., Dai, S., Ford, E. S., Fox, C. S., Franco, S., Fullerton, H. J., Gillespie, C., Hailpern, S. M., Heit, J. A., Howard, V. J., Huffman, M. D., Kissela, B. M., Kittner, S. J., …Stroke Statistics, S. (2013). Heart disease and stroke statistics--2013 update: A report from the American Heart Association. Circulation, 127(1), e6-e245. https://doi.org/10.1161/CIR.0b013e31828124ad
Green, D., & Wilson, P. H. (2012). Use of virtual reality in rehabilitation of movement in children with hemiplegia--a multiple case study evaluation. Disability and Rehabilitation, 34(7), 593-604. https://doi.org/10.3109/09638288.2011.613520
Holden, M. K. (2005). Virtual environments for motor rehabilitation: review. Cyberpsychology Behavior, 8(3), 187-211; discussion 212-189. https://doi.org/10.1089/cpb.2005.8.187
Jafni, T. I., Bahari, M., Ismail, W., & Radman, A. (2017). Understanding the Implementation of telerehabilitation at pre-implementation stage: A systematic literature review. Procedia Computer Science, 124, 452-460. https://doi.org/https://doi.org/10.1016/j.procs.2017.12.177
Kairy. (2015). Post-stroke upper limb rehabilitation using telerehabilitation interactive virtual reality system in the patient's home. https://clinicaltrials.gov/show/NCT02491203. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01553455/full
Kairy. (2018). Optimizing a home-based virtual reality exercise program for chronic stroke patients: A telerehabilitation approach. https://clinicaltrials.gov/show/NCT03759106. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01701407/full
Kairy, D., Veras, M., Archambault, P., Hernandez, A., Higgins, J., Levin, M. F., Poissant, L., Raz, A., & Kaizer, F. (2016). Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: Study protocol of a randomized clinical trial. Contemporary Clinical Trials, 47, 49-53. https://doi.org/10.1016/j.cct.2015.12.006
Karamians, R., Proffitt, R., Kline, D., & Gauthier, L. V. (2020). Effectiveness of virtual reality- and gaming-based interventions for upper extremity rehabilitation poststroke: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 101(5), 885-896. https://doi.org/10.1016/j.apmr.2019.10.195
Kato, N., Tanaka, T., Sugihara, S., & Shimizu, K. (2015). Development and evaluation of a new telerehabilitation system based on VR technology using multisensory feedback for patients with stroke. Journal of Physical Therapy Science, 27(10), 3185-3190. https://doi.org/10.1589/jpts.27.3185
Kiper, P., Piron, L., Turolla, A., Stożek, J., & Tonin, P. (2011). The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke. Neurologia i Neurochirurgia Polska, 45(5), 436-444. https://doi.org/10.1016/s0028-3843(14)60311-x
Kuttuva, M., Boian, R., Merians, A., Burdea, G., Bouzit, M., Lewis, J., & Fensterheim, D. (2006). The Rutgers Arm, a rehabilitation system in virtual reality: A pilot study. Cyberpsychol Behav, 9(2), 148-151. https://doi.org/10.1089/cpb.2006.9.148
Lawrence, E. S., Coshall, C., Dundas, R., Stewart, J., Rudd, A. G., Howard, R., & Wolfe, C. D. (2001). Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke, 32(6), 1279-1284. doi:10.1161/01.str.32.6.1279
Laver, K. E., Adey-Wakeling, Z., Crotty, M., Lannin, N. A., George, S., & Sherrington, C. (2020). Telerehabilitation services for stroke. Cochrane Database of Systematic Reviews, 1, CD010255-CD010255. https://doi.org/10.1002/14651858.CD010255.pub3
Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, 11(11), CD008349-CD008349. https://doi.org/10.1002/14651858.CD008349.pub4
Lee, M., Pyun, S. B., Chung, J., Kim, J., Eun, S. D., & Yoon, B. (2016). A further step to develop patient-friendly implementation strategies for virtual reality-based rehabilitation in patients with acute stroke. Physical Therapy, 96(10), Issue 10, 1554–1564. https://doi.org/10.2522/ptj.20150271
Lee, M., Siewiorek, D., Smailagic, A., Bernadino, A., & Bermúdez i Badia, S. (2019). Learning to assess the quality of stroke rehabilitation exercises. Proceedings of the 24th International Conference on Intelligent User Interfaces, 218–228. https://doi.org/10.1145/3301275.3302273
Lee, M., Siewiorek, D., Smailagic, A., Bernardino, A., & Bermúdez i Badia, S. (2020). Interactive hybrid approach to combine machine and human intelligence for personalized rehabilitation assessment. Proceedings of the ACM Conference on Health, Inference, and Learning, 160–169. https://doi.org/10.1145/3368555.3384452
Levin, M. F., Weiss, P. L., & Keshner, E. A. (2015). Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor control and motor learning principles. Physical Therapy, 95(3), 415-425. https://doi.org/10.2522/ptj.20130579
Lin, D. J., Finklestein, S. P., & Cramer, S. C. (2018). New directions in treatments targeting stroke recovery. Stroke, 49(12), 3107-3114. https://doi.org/10.1161/STROKEAHA.118.021359
Lloréns, R., Noé, E., Colomer, C., & Alcañiz, M. (2015). Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 96(3), 418-425.e412. https://doi.org/10.1016/j.apmr.2014.10.019
Lohse, K. R., Hilderman, C. G. E., Cheung, K. L., Tatla, S., & Van der Loos, H. F. M. (2014). Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS One, 9(3), e93318-e93318. https://doi.org/10.1371/journal.pone.0093318
Maier, M., Rubio Ballester, B., Duff, A., Duarte Oller, E., & Verschure, P. F. M. J. (2019). Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: A systematic meta-analysis. Neurorehabilitation and Neural Repair, 33(2), 112-129. https://doi.org/10.1177/1545968318820169
Mallari, B., Spaeth, E. K., Goh, H., & Boyd, B. S. (2019). Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. Journal of Pain Research, 12, 2053-2085. https://doi.org/10.2147/JPR.S200498
Mekbib, D. B., Han, J., Zhang, L., Fang, S., Jiang, H., Zhu, J., Roe, A. W., & Xu, D. (2020). Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials. Brain Injury, 34(4), 456-465 https://doi.org/https://doi.org/10.1080/02699052.2020.1725126
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Moseley, A. M., Herbert Rd Fau - Sherrington, C., Sherrington C Fau - Maher, C. G., & Maher, C. G. (2002). Evidence for physiotherapy practice: a survey of the Physiotherapy Evidence Database (PEDro). Australian Journal of Physiotherapy, 48(1), 43-49. https://doi.org/https://doi.org/10.1016/S0004-9514(14)60281-6
Negrini, S., Grabljevec, K., Boldrini, P., Kiekens, C., Moslavac, S., Zampolini, M., & Christodoulou, N. (2020). Up to 2.2 million people experiencing disability suffer collateral damage each day of Covid-19 lockdown in Europe. LID - 10.23736/S1973-9087.20.06361-3 [doi]. European Journal of Physical and Rehabilitation Medicine, 56(3), 361-365. https://doi.org/https://doi.org/10.23736/S1973-9087.20.06361-3
Palma, G. C. D. S., Freitas, T. B., Bonuzzi, G. M. G., Soares, M. A. A., Leite, P. H. W., Mazzini, N. A., Almeida, M. R. G., Pompeu, J. E., & Torriani-Pasin, C. (2017). Effects of virtual reality for stroke individuals based on the International Classification of Functioning and Health: A systematic review. Topics in Stroke Rehabilitation, 24(4), 269-278. https://doi.org/10.1080/10749357.2016.1250373
Pareto, L., Johansson, B., Zeller, S., Sunnerhagen, K. S., Rydmark, M., & Broeren, J. (2011). Virtual TeleRehab: A case study. Studies in Health Technology and Informatics, 169, 676-680. https://doi.org/https://doi.org/10.3233/978-1-60750-806-9-676
Pericas, J. M., Aibar, J., Soler, N., Lopez-Soto, A., Sanclemente-Anso, C., & Bosch, X. (2013). Should alternatives to conventional hospitalisation be promoted in an era of financial constraint? European Journal of Clinical Investigation, 43(6), 602-615. https://doi.org/10.1111/eci.12087
Perry, J., Andureu, J., Cavallaro, F., Veneman, J., Carmien, S., & Keller, T. (2010). Effective game use in neurorehabilitation: user-centered perspectives. In Handbook of Research on Improving Learning and Motivation through Educational Games, IGI Global. https://doi.org/10.4018/978-1-60960-495-0.ch032
Piron, L., Tonin, P., Atzori, A. M., Zanotti, E., Massaro, C., Trivello, E., & Dam, M. (2002). Virtual environment system for motor tele-rehabilitation. Studies in Health Technology and Informatics, 85, 355-361. https://doi.org/
3233/978-1-60750-929-5-355
Piron, L., Tonin, P., Trivello, E., Battistin, L., & Dam, M. (2004). Motor tele-rehabilitation in post-stroke patients. Medical Informatics and the Internet in Medicine, 29(2), 119-125. https://doi.org/10.1080/14639230410001723428
Piron, L., Turolla A., Agostini, M., Zucconi C., Cortese, F., Zampolini, M., Zannini, M., Dam, M., Ventura, L., Battauz, M., Tonin, P. (2009). Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. Journal of Rehabilitation Medicine, 41(12), 1016-102. https://doi.org/doi: 10.2340/16501977-0459.
Piron, L., Turolla, A., Tonin, P., Piccione, F., Lain, L., & Dam, M. (2008). Satisfaction with care in post-stroke patients undergoing a telerehabilitation programme at home. Journal of Telemedicine and Telecare, 14(5), 257-260. https://doi.org/10.1258/jtt.2008.080304
Proffitt, R., & Lange, B. (2015). Feasibility of a customized, in-home, game-based stroke exercise program using the Microsoft Kinect® Sensor. International Journal of Telerehabilitation, 7(2), 23-34. https://doi.org/10.5195/ijt.2015.6177
Putrino, D. (2014). Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Current Opinion in Neurology, 27(6), 631-636. https://doi.org/10.1097/WCO.0000000000000152
Rizzo, A., & Kim, G. (2005). A SWOT analysis of the field of virtual rehabilitation and therapy. Presence Teleoperators & Virtual Environments, 14:119-146, 14, 119-146. https://doi.org/10.1162/1054746053967094
Rodriguez-de-Pablo, C., Balasubramanian, S., Savić, A., Tomić, T., Konstantinovic, L., & Keller, T. (2015). Validating ArmAssist Assessment as outcome measure in upper-limb post-stroke telerehabilitation. IEEE Xplore (Vol. 2015). https://doi.org/10.1109/EMBC.2015.7319424
Saaiq, M., & Ashraf, B. (2017). Modifying "PICO" question into "PICOS" model for more robust and reproducible presentation of the methodology employed in a scientific study. World Journal of Plastic Surgery, 6(3), 390-392. https://pubmed.ncbi.nlm.nih.gov/29218294
Sarfo, F. S., Ulasavets, U., Opare-Sem, O. K., & Ovbiagele, B. (2018). Tele-Rehabilitation after stroke: An updated systematic review of the literature. Journal of Stroke and Cerebrovascular Diseases, 27(9), 2306-2318. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.013
Schwamm L.H., Holloway, R. G., Amarenco, P., Audebert, H. J., Bakas, T., Chumbler, N. R., Handschu, R., Jauch, E. C., Knight, W. A. T, Levine, S. R., Mayberg, M., Meyer, B. C., Meyers, P. M., Skalabrin, E., Wechsler, L. R. (2009). A review of the evidence for the use of telemedicine within stroke systems of care: A scientific statement from the American Heart Association/American Stroke Association. Stroke, 40(7):2616-34. https://doi.org/10.1161/STROKEAHA.109.192360.
Sheehy, L., Taillon-Hobson, A., Sveistrup, H., Bilodeau, M., Yang, C., Welch, V., Hossain, A., & Finestone, H. (2019). Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: A parallel randomized feasibility trial. Trials, 20(1), 333-333. https://doi.org/10.1186/s13063-019-3438-9
Stucki, G., Cieza, A., & Melvin, J. (2007). The International Classification of Functioning, Disability and Health (ICF): A unifying model for the conceptual description of the rehabilitation strategy. Journal of Rehabilitation Medicine, 39(4), 279-285. https://doi.org/10.2340/16501977-0041
Thielbar, K. O., Triandafilou, K. M., Barry, A. J., Yuan, N., Nishimoto, A., Johnson, J., Stoykov, M. E., Tsoupikova, D., & Kamper, D. G. (2020). Home-based upper extremity stroke therapy using a multiuser virtual reality environment: A randomized trial. Archives of Physical Medicine and Rehabilitation, 101(2), 196-203. https://doi.org/10.1016/j.apmr.2019.10.182
Triandafilou, K. M., Tsoupikova, D., Barry, A. J., Thielbar, K. N., Stoykov, N., & Kamper, D. G. (2018). Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke. Journal of Neuroengineering and Rehabilitation, 15(1), 88-88. https://doi.org/10.1186/s12984-018-0429-0
Valdés, B. A., Glegg, S. M. N., Lambert-Shirzad, N., Schneider, A. N., Marr, J., Bernard, R., Lohse, K., Hoens, A. M., & Van der Loos, H. F. M. (2018). Application of commercial games for home-based rehabilitation for people with hemiparesis: challenges and lessons learned. Games for Health Journal, 7(3), 197-207. https://doi.org/10.1089/g4h.2017.0137
Veras, M., Kairy, D., Rogante, M., & Giacomozzi, C. (2015). Outcome Measures in tele-rehabilitation and virtual reality for stroke survivors: Protocol for a scoping review. Global Journal of Health Science, 8(1), 79-82. https://doi.org/10.5539/gjhs.v8n1p79
Veras, M., Kairy, D., Rogante, M., Giacomozzi, C., & Saraiva, S. (2017). Scoping review of outcome measures used in telerehabilitation and virtual reality for post-stroke rehabilitation. Journal of Telemedicine and Telecare, 23(6), 567-587. https://doi.org/10.1177/1357633X16656235
Viñas-Diz, S., & Sobrido-Prieto, M. (2016). Virtual reality for therapeutic purposes in stroke: A systematic review [Realidad virtual con fines terapéuticos en pacientes con ictus: revisión sistemática]. Neurologia (Barcelona, Spain), 31(4), 255-277. https://doi.org/10.1016/j.nrl.2015.06.012
Vourganas, I., Stankovic, V., Stankovic, L., & Kerr, A. (2019). Factors that contribute to the use of stroke self-rehabilitation technologies: A review. JMIR Biomed Eng, 4(1), e13732. https://doi.org/10.2196/13732
Yang, G., Deng, J., Pang, G., Zhang, H., Li, J., Deng, B., Pang, Z., Xu, J., Jiang, M., Liljeberg, P., Xie, H., & Yang, H. (2018). An IoT-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE Journal of translational Engineering in Health and Medicine, 6, 2100510-2100510. https://doi.org/10.1109/JTEHM.2018.2822681
Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38, 25-32. https://doi.org/10.1109/MC.2005.297
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.