Evaluating Efficiency of a Provincial Telerehabilitation Service in Improving Access to Care During the COVID-19 Pandemic

Authors

  • Katelyn Brehon Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
  • Jay Carriere Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
  • Katie Churchill Allied Health Professional Practice and Education, Alberta Health Services, Alberta, Canada; Department of Occupational Therapy, University of Alberta, Edmonton, Alberta, Canada
  • Adalberto Loyola-Sanchez Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
  • Elizabeth Papathanassoglou Neurosciences, Rehabilitation, and Vision Strategic Clinical Network (TM), Alberta Health Services, Alberta, Canada; Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
  • Rob MacIsaac Spinal Cord Injury Alberta, Edmonton, Alberta, Canada
  • Mahdi Tavakoli Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
  • Chester Ho Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Neurosciences, Rehabilitation, and Vision Strategic Clinical Network (TM), Alberta Health Services, Alberta, Canada
  • Kiran Pohar Manhas Neurosciences, Rehabilitation, and Vision Strategic Clinical Network (TM), Alberta Health Services, Alberta, Canada; Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada

DOI:

https://doi.org/10.5195/ijt.2023.6523

Keywords:

artificial intelligence, call utilization, machine learning, qualitative description

Abstract

Scope: Early in the COVID-19 pandemic, community rehabilitation stakeholders from a provincial health system designed a novel telerehabilitation service. The service provided wayfinding and self-management advice to individuals with musculoskeletal concerns, neurological conditions, or post-COVID-19 recovery needs. This study evaluated the efficiency of the service in improving access to care.

Methodology: We used multiple methods including secondary data analyses of call metrics, narrative analyses of clinical notes using artificial intelligence (AI) and machine learning (ML), and qualitative interviews.                                                                       

Conclusions: Interviews revealed that the telerehabilitation service had the potential to positively impact access to rehabilitation during the COVID-19 pandemic, for individuals living rurally, and for individuals on wait lists. Call metric analyses revealed that efficiency may be enhanced if call handling time was reduced. AI/ML analyses found that pain was the most frequently-mentioned keyword in clinical notes, suggesting an area for additional telerehabilitation resources to ensure efficiency.

  

References

Alberta Health Services Provincial Rehabilitation Forum. (2016). Rehabilitation Strategic Plan 2016-2019.

Amin, J., Ahmad, B., Amin, S., Siddiqui, A. A., & Alam, M. K. (2022). Rehabilitation professional and patient satisfaction with telerehabilitation of musculoskeletal disorders: A systematic review. BioMed Research International, 2022, 1–10. https://doi.org/10.1155/2022/7366063

Barbosa, I. de A., & Silva, M. J. P. da. (2017). Nursing care by telehealth: What is the influence of distance on communication? Revista Brasileira de Enfermagem, 70(5), 928–934. https://doi.org/10.1590/0034-7167-2016-0142

Bodenreider, O. (2004). The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Research, 32(DATABASE ISS.). https://doi.org/10.1093/nar/gkh061

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Braun, V., & Clarke, V. (2021). One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Research in Psychology, 18(3), 328–352. https://doi.org/10.1080/14780887.2020.1769238

Brehon, K., Carriere, J., Churchill, K., Loyola-Sanchez, A., O’Connell, P., Papathanasoglou, E., MacIsaac, R., Tavakoli, M., Ho, C., & Manhas, K. P. (2022). Evaluating the impact of a novel telerehabilitation service to address neurological, musculoskeletal, or coronavirus disease 2019 rehabilitation concerns during the coronavirus disease 2019 pandemic. DIGITAL HEALTH, 8, 205520762211016. https://doi.org/10.1177/20552076221101684

Brehon, K., Carriere, J., Churchill, K., Loyola-Sanchez, A., O’Connell, P., Papathanasoglou, E., MacIsaac, R., Tavakoli, M., Ho, C., & Pohar Manhas, K. (2021). Evaluating community-facing virtual modalities to support complex neurological populations during the COVID-19 pandemic: A protocol. JMIR Research Protocols.

Buabbas, A. J., Albahrouh, S. E., Alrowayeh, H. N., & Alshawaf, H. (2022). Telerehabilitation during the COVID-19 pandemic: Patients’ attitudes and satisfaction and physical therapists’ experiences. Medical Principles and Practice. https://doi.org/10.1159/000523775

Caffery, L. J., Farjian, M., & Smith, A. C. (2016). Telehealth interventions for reducing waiting lists and waiting times for specialist outpatient services: A scoping review. Journal of Telemedicine and Telecare, 22(8), 504–512. https://doi.org/10.1177/1357633X16670495

Carriere, J., Shafi, H., Brehon, K., Pohar Manhas, K., Churchill, K., Ho, C., & Tavakoli, M. (2021). Case Report: Utilizing AI and NLP to assist with healthcare and rehabilitation during the COVID-19 pandemic. Frontiers in Artificial Intelligence, 4(February), 1–7. https://doi.org/10.3389/frai.2021.613637

Feinberg, R. A., Kim, I. S., Hokama, L., de Ruyter, K., & Keen, C. (2000). Operational determinants of caller satisfaction in the call center. International Journal of Service Industry Management, 11(2), 131–141. https://doi.org/10.1108/09564230010323633

Gadenz, S. D., Basso, J., de Oliviera, P. R. B. P., Sperling, S., Zuanazzi, M. V. D., Oliveira, G. G., da Silva, I. M., Motta, R. M., Gehres, L. G., de Brito Mallmann, É., Rodrigues, Á. S., Pachito, D. v., & de Faria Leao, B. (2021). Telehealth to support referral management in a universal health system: A before-and-after study. BMC Health Services Research, 21(1). https://doi.org/10.1186/s12913-021-07028-5

Gajarawala, S. N., & Pelkowski, J. N. (2021). Telehealth benefits and barriers. Journal for Nurse Practitioners, 17(2), 218–221. https://doi.org/10.1016/j.nurpra.2020.09.013

Health Quality Council of Alberta. (2005). Alberta Quality Matrix for Health. www.hqca.ca

Henry, B. W., Block, D. E., Ciesla, J. R., McGowan, B. A., & Vozenilek, J. A. (2017). Clinician behaviors in telehealth care delivery: A systematic review. Advances in Health Sciences Education, 22(4), 869–888. https://doi.org/10.1007/s10459-016-9717-2

Johansson, T., & Wild, C. (2011). Telerehabilitation in stroke care - A systematic review. Journal of Telemedicine and Telecare, 17(1), 1–6. https://doi.org/10.1258/jtt.2010.100105

Lee, A., Davenport, T., & Randall, K. (2018). Telehealth physical therapy in musculoskeletal practice. Journal of Orthopedic & Sports Physical Therapy, 48(10), 736–739.

Lifeline Research Foundation. (2013). Summary of Research and Evaluation of Crisis Helplines.

Moffet, H., Tousignant, M., Nadeau, S., Mérette, C., Boissy, P., Corriveau, H., Marquis, F., Cabana, F., Belzile, É. L., Ranger, P., & DImentberg, R. (2017). Patient satisfaction with in-home telerehabilitation after total knee arthroplasty: Results from a randomized controlled trial. Telemedicine and E-Health, 23(2), 80–87. https://doi.org/10.1089/tmj.2016.0060

Pastora-Bernal, J. M., Martín-Valero, R., Barón-López, F. J., & Estebanez-Pérez, M. J. (2017). Evidence of benefit of telerehabilitation after orthopedic surgery: A systematic review. Journal of Medical Internet Research, 19(4), 1–13. https://doi.org/10.2196/jmir.6836

Pfeil, J. N., Rados, D. v., Roman, R., Katz, N., Nunes, L. N., Vigo, Á., & Harzheim, E. (2020). A telemedicine strategy to reduce waiting lists and time to specialist care: A retrospective cohort study. Journal of Telemedicine and Telecare. https://doi.org/10.1177/1357633X20963935

Richter, A. N., & Khoshgoftaar, T. M. (2018). A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. In Artificial Intelligence in Medicine, 90, 1–14. https://doi.org/10.1016/j.artmed.2018.06.002

Sandelowski, M. (2000). Whatever happened to qualitative description? Research in Nursing and Health, 23(4), 334–340. https://doi.org/10.1002/1098-240x(200008)23:4<334::aid-nur9>3.0.co;2-g

Sandelowski, M. (2010). What’s in a name? Qualitative description revisited. Research in Nursing and Health, 33(1), 77–84. https://doi.org/10.1002/nur.20362

Savova, G. K., Masanz, J. J., Ogren, P. v., Zheng, J., Sohn, S., Kipper-Schuler, K. C., & Chute, C. G. (2010). Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications. Journal of the American Medical Informatics Association, 17(5), 507–513. https://doi.org/10.1136/jamia.2009.001560

Seron, P., Oliveros, M. J., Gutierrez-Arias, R., Fuentes-Aspe, R., Torres-Castro, R. C., Merino-Osorio, C., Nahuelhual, P., Inostroza, J., Jalil, Y., Solano, R., Marzuca-Nassr, G. N., Aguilera-Eguía, R., Lavados-Romo, P., Soto-Rodríguez, F. J., Sabelle, C., Villarroel-Silva, G., Gomolán, P., Huaiquilaf, S., & Sanchez, P. (2021). Effectiveness of telerehabilitation in physical therapy: A rapid overview. Physical Therapy, 101(6). https://doi.org/10.1093/ptj/pzab053

Tavakoli, M., Carriere, J., & Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID‐19 pandemic: An analysis of the state of the art and future vision. Advanced Intelligent Systems, 2(7), 2000071. https://doi.org/10.1002/aisy.202000071

Taylor-Gjevre, R., Nair, B., Bath, B., Okpalauwaekwe, U., Sharma, M., Penz, E., Trask, C., & Stewart, S. (2018). Addressing rural and remote access disparities for patients with inflammatory arthritis through video-conferencing and innovative inter-professional care models. Musculoskeletal Care, 16(1), 90–95.

Tousignant, M., Boissy, P., Moffet, H., Corriveau, H., Cabana, F., Marquis, F., & Simard, J. (2011). Patients’ satisfaction of healthcare services and perception with in-home telerehabilitation and physiotherapists’ satisfaction toward technology for post-knee arthroplasty: An embedded study in a randomized trial. Telemedicine and E-Health, 17(5), 376–382. https://doi.org/10.1089/tmj.2010.0198

Tsvyakh, A. I., & Hospodarskyy, A. J. (2017). Telerehabilitation of patients with injuries of the lower extremities. Telemedicine and E-Health, 23(12), 1011–1015. https://doi.org/10.1089/tmj.2016.0267

Wosik, J., Fudim, M., Cameron, B., Gellad, Z. F., Cho, A., Phinney, D., Curtis, S., Roman, M., Poon, E. G., Ferranti, J., Katz, J. N., & Tcheng, J. (2020). Telehealth transformation: COVID-19 and the rise of virtual care. Journal of the American Medical Informatics Association, 27(6), 957–962. https://doi.org/10.1093/jamia/ocaa067

Downloads

Published

2023-05-11

How to Cite

Brehon, K., Carriere, J., Churchill, K., Loyola-Sanchez, A., Papathanassoglou, E., MacIsaac, R., Tavakoli, M., Ho, C., & Pohar Manhas, K. (2023). Evaluating Efficiency of a Provincial Telerehabilitation Service in Improving Access to Care During the COVID-19 Pandemic. International Journal of Telerehabilitation, 15(1). https://doi.org/10.5195/ijt.2023.6523

Issue

Section

Clinical Practice - COVID 19