Telerehabilitation is Effective to Recover Functionality and Increase Skeletal Muscle Mass Index in COVID-19 Survivors

Authors

  • Jorge Cancino-López Exercise Physiology and Metabolism Laboratory, Medicine Faculty, Finis Terrae University https://orcid.org/0000-0003-3620-9861
  • Patricio Zarricueta Vergara Sports Corporation of Florida,
  • Bárbara Leyton Dinamarca Institute of Nutrition and Food Technology (INTA), University of Chile https://orcid.org/0000-0001-6982-5447
  • Pedro Figueroa Contreras Sports Corporation of Florida, La Florida
  • Luis Miño Cárcamo, Sports Corporation of Florida, La Florida
  • Nicolás Cartagena Ibarra Institute of Nutrition and Food Technology (INTA), University of Chile
  • Johana Soto-Sánchez Department of Physical Activity, Faculty of Sciences of Physical Activity and Sports, Research Laboratory in Physical Activity and Sport. University of Playa Ancha.

DOI:

https://doi.org/10.5195/ijt.2021.6415

Keywords:

Barthel index, COVID-19, Hand grip strength, Skeletal muscle mass, Physical therapy, Telerehabilitation

Abstract

Objective: The purpose of this study was to evaluate the effects of a telerehabilitation program for COVID-19 survivors on their functionality, aerobic capacity, upper-lower body strength and skeletal muscle mass index. Methods: Fifty patients (22 M); age 54.1±15.4 who became ill with COVID-19 during 2020 completed a 24-session telerehabilitation program. The following measures were taken: Barthel’s index, two minutes step test (2MST), elbow flexion one-repetition maximal (1RM), short physical performance battery (SPPB), hand grip strength, 30-second chair stand, skeletal muscle index (SMI), body fat percentage, resting pulse, arterial blood pressure, and pulse oximetry. Results: There was a significant increase in the Barthel index (p?0.0001), 2MST (p?0.0001), 1RM elbow flexion (p?0.0001), SPPB (p?0.0001), hand grip strength (p?0.0001), 30-second chair stand (p?0.0001), and SMI (p?0.0001). Conclusion: A 24 session in-home telerehabilitation program promoted the recovery of physical independence and increases in skeletal muscle mass index and physical fitness.

  

References

Belli, S., Balbi, B., Prince, I., Cattaneo, D., Masocco, F., Zaccaria, S., Bertalli, L., Cattini, F., Lomazzo, A., Dal Negro, F., Giardini, M., Franssen, F. M. E., Janssen, D. J. A., & Spruit, M. A. (2020). Low physical functioning and impaired performance of activities of daily life in COVID-19 patients who survived hospitalisation. European Respiratory Journal, 56(4), 2002096. https://doi.org/10.1183/13993003.02096-2020

Bohannon, R. W., Bubela, D. J., Magasi, S. R., Wang, Y. C., & Gershon, R. C. (2010). Sit-to-stand test: Performance and determinants across the age-span. Isokinetics and Exercise Science, 18(4), 235-240. https://doi.org/10.3233/IES-2010-0389

Bohannon, R. W., & Crouch, R. H. (2019). Two-Minute Step Test of Exercise Capacity: Systematic review of procedures, performance, and clinimetric properties. Geriatric Physical Therapy, 42(2), 105-112. https://doi.org/10.1519/JPT.0000000000000164

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381. https://www.ncbi.nlm.nih.gov/pubmed/7154893

Briand, J., Behal, H., Chenivesse, C., Wémeau-Stervinou, L., & Wallaert, B. (2018). The 1-minute sit-to-stand test to detect exercise-induced oxygen desaturation in patients with interstitial lung disease. Therapeutic Advances in Respiratory Disease, 12, 1-10, 1753466618793028. https://doi.org/10.1177/1753466618793028

Carfì, A., Bernabei, R., Landi, F., & Group, G. A. C.-P.-A. C. S. (2020). Persistent symptoms in patients after acute COVID-19. Journal of the American Medical Association, 324(6), 603-605. https://doi.org/10.1001/jama.2020.12603

Cheval, B., Sieber, S., Maltagliati, S., P. Millet, G., Formánek, T., Chalabaev, A., Cullati, S., & Boisgontier, M. P. (2021). Muscle strength is associated with COVID-19 hospitalization in adults 50 years of age or older. Journal of Cachexia, Sarcopenia and Muscle, 12, 1136-1143. https://doi.org/10.1002/jcsm.12738

Cid-Ruzafa, J., & Damian-Moreno, J. (1997). Valoración de la discapacidad física: el indice de Barthel [Disability evaluation: Barthel's index]. Revista espanola de Salud Pública, 71(2), 127–137. https://www.ncbi.nlm.nih.gov/pubmed/9546856

Di Filippo, L., De Lorenzo, R., D'Amico, M., Sofia, V., Roveri, L., Mele, R., Saibene, A., Rovere-Querini, P., & Conte, C. (2021). COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clinical Nutrition, 40(4), 2420-2426. https://doi.org/10.1016/j.clnu.2020.10.043

Driehuis, E. R., van den Akker, L. E., de Groot, V., & Beckerman, H. (2018). Aerobic capacity explains physical functioning and participation in patients with multiple sclerosis-related fatigue. Journal of Rehabilitation Medicine, 50(2), 185-192. https://doi.org/10.2340/16501977-2306

Ekiz, T., Kara, M., & Özçakar, L. (2020). Measuring grip strength in COVID-19: A simple way to predict overall frailty/impairment. Journal of Cardiopulmonary and Acute Care, 49(6), 853-854. https://doi.org/10.1016/j.hrtlng.2020.05.011

Fess, E. (1992). Grip Strength (2nd edition ed.). In: Casanova JS, editor. Clinical assessment recommendations. 2nd ed. Chicago: American Society of Hand Therapists.

Goodacre, S., Thomas, B., Lee, E., Sutton, L., Loban, A., Waterhouse, S., Simmonds, R., Biggs, K., Marincowitz, C., Schutter, J., Connelly, S., Sheldon, E., Hall, J., Young, E., Bentley, A., Challen, K., Fitzsimmons, C., Harris, T., Lecky, F., Lee, A., Maconochie, I., & Walter, D. (2021). Post-exertion oxygen saturation as a prognostic factor for adverse outcome in patients attending the emergency department with suspected COVID-19: a substudy of the PRIEST observational cohort study. Emergency Medicine Journal, 38, 88-93 https://doi.org/10.1136/emermed-2020-210528

Hasegawa, Y., Takahashi, F., Hashimoto, Y., Munekawa, C., Hosomi, Y., Okamura, T., Okada, H., Senmaru, T., Nakanishi, N., Majima, S., Ushigome, E., Hamaguchi, M., Yamazaki, M., & Fukui, M. (2021). Effect of COVID-19 pandemic on the change in skeletal muscle mass in older patients with type 2 diabetes: A retrospective cohort study. International Journal of Environmental Research and Public Health, 18(8), 4188. https://doi.org/10.3390/ijerph18084188

He, W., Peng, N., Chen, Q., Xiang, T., Wang, P., & Pang, J. (2020). The relationships among the skeletal muscle mass index, cardiorespiratory fitness and the prevalence of coronary artery disease in the elderly population. Archives of Gerontology Geriatrics, volume 90 September–October, 104107. https://doi.org/10.1016/j.archger.2020.104107

Jacobs, L. G., Gourna Paleoudis, E., Lesky-Di Bari, D., Nyirenda, T., Friedman, T., Gupta, A., Rasouli, L., Zetkulic, M., Balani, B., Ogedegbe, C., Bawa, H., Berrol, L., Qureshi, N., & Aschner, J. L. (2020). Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS One, 15(12), e0243882. https://doi.org/10.1371/journal.pone.0243882

Jones, C. J., Rikli, R. E., & Beam, W. C. (1999). A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Research Quarterly for Exercise and Sport, 70(2), 113-119. https://doi.org/10.1080/02701367.1999.10608028

Kendrick, K. R., Baxi, S. C., & Smith, R. M. (2000). Usefulness of the modified 0-10 Borg scale in assessing the degree of dyspnea in patients with COPD and asthma. Journal of Emergency Nursing, 26(3), 216-222. https://doi.org/10.1016/s0099-1767(00)90093-x

Kim, J. H., Hong, A. R., Choi, H. J., Ku, E. J., Lee, J. H., Cho, N. H., & Shin, C. S. (2018). Defining sarcopenia in terms of skeletal health. Archives of Osteoporosis, 13(1), 100. https://doi.org/10.1007/s11657-018-0511-z

Le, M. Q., Rosales, R., Shapiro, L. T., & Huang, L. Y. (2020). The down side of prone positioning: The case of a Coronavirus 2019 survivor. American Journal of Physical Medicine and Rehabilitation, 99(10), 870-872. https://doi.org/10.1097/PHM.0000000000001530

Lieshout, E. C. C. V., van de Port, I. G., Dijkhuizen, R. M., & Visser-Meily, J. M. A. (2020). Does upper limb strength play a prominent role in health-related quality of life in stroke patients discharged from inpatient rehabilitation? Topics in Stroke Rehabilitation, 27(7), 525-533. https://doi.org/10.1080/10749357.2020.1738662

Norton, K., & Olds, T. (1995). Antropometrica [Spanish version of Anthropometrica]

Paneroni, M., Simonelli, C., Saleri, M., Bertacchini, L., Venturelli, M., Troosters, T., Ambrosino, N., & Vitacca, M. (2021). Muscle Strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. American Journal of Physical Medicine and Rehabilitation, 100(2), 105-109. https://doi.org/10.1097/PHM.0000000000001641

Prvu Bettger, J., & Resnik, L. J. (2020). Telerehabilitation in the age of COVID-19: An opportunity for learning health system research. Physical Therapy and Rehabilitation Journal, 100(11), 1913-1916. https://doi.org/10.1093/ptj/pzaa151

Reynolds, J. M., Gordon, T. J., & Robergs, R. A. (2006). Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. Journal of Strength Conditioning Research, 20(3), 584-592. https://doi.org/10.1519/R-15304.1

Rikli, R. E., & Jones, C. J. (2013). Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist, 53(2), 255-267. https://doi.org/10.1093/geront/gns071

Rodríguez-Mañas, L., Bayer, A. J., Kelly, M., Zeyfang, A., Izquierdo, M., Laosa, O., Hardman, T. C., Sinclair, A. J., Moreira, S., Cook, J., & Consortium, M.-F. (2014). An evaluation of the effectiveness of a multi-modal intervention in frail and pre-frail older people with type 2 diabetes--the MID-Frail study: Study protocol for a randomised controlled trial. Trials Journal, 15(34), 2-9. https://doi.org/10.1186/1745-6215-15-34

Rooney, S., Webster, A., & Paul, L. (2020). Systematic review of changes and recovery in physical function and fitness after Severe Acute Respiratory Syndrome-related Coronavirus infection: Implications for COVID-19 rehabilitation. Physical Therapy and Rehabilitation Journal, 100(10), 1717-1729. https://doi.org/10.1093/ptj/pzaa129

Sakai, T., Hoshino, C., Yamaguchi, R., Hirao, M., Nakahara, R., & Okawa, A. (2020). Remote rehabilitation for patients with COVID-19. Journal Rehabilitation Medicine, 52(9), jrm00095. https://doi.org/10.2340/16501977-2731

Schutte, R., Thijs, L., Asayama, K., Boggia, J., Li, Y., Hansen, T. W., Liu, Y. P., Kikuya, M., Björklund-Bodegård, K., Ohkubo, T., Jeppesen, J., Torp-Pedersen, C., Dolan, E., Kuznetsova, T., Stolarz-Skrzypek, K., Tikhonoff, V., Malyutina, S., Casiglia, E., Nikitin, Y., Lind, L., Sandoya, E., Kawecka-Jaszcz, K., Filipovsky, J., Imai, Y., Wang, J., Ibsen, H., O'Brien, E., Staessen, J. A., & Investigators, I. D. o. A. b. p. i. r. t. C. O. I. (2013). Double product reflects the predictive power of systolic pressure in the general population: Evidence from 9,937 participants. American Journal of Hypertension, 26(5), 665-672. https://doi.org/10.1093/ajh/hps119

Werneke, M. W., Deutscher, D., Grigsby, D., Tucker, C. A., Mioduski, J. E., & Hayes, D. (2021). Telerehabilitation during the COVID-19 pandemic in outpatient rehabilitation settings: A descriptive study. Physical Therapy and Rehabilitation Journal, 101(7), 1-7. https://doi.org/10.1093/ptj/pzab110

Wischmeyer, P. E., Puthucheary, Z., San Millan, I., Butz, D., & Grocott, M. P. W. (2017). Muscle mass and physical recovery in ICU: Innovations for targeting of nutrition and exercise. Current Opinion in Critical Care, 23(4), 269-278. https://doi.org/10.1097/MCC.0000000000000431

Yanagawa, N., Shimomitsu, T., Kawanishi, M., Fukunaga, T., & Kanehisa, H. (2016). Relationship between performances of 10-time-repeated sit-to-stand and maximal walking tests in non-disabled older women. Journal of Physiological Anthropology, 36(1), 2. https://doi.org/10.1186/s40101-016-0100-z

Yee, X. S., Ng, Y. S., Allen, J. C., Latib, A., Tay, E. L., Abu Bakar, H. M., Ho, C. Y. J., Koh, W. C. C., Kwek, H. H. T., & Tay, L. (2021). Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. European Review of Aging and Physical Activity, 18(1), 1. https://doi.org/10.1186/s11556-020-00255-5

Zanini, A., Crisafulli, E., D'Andria, M., Gregorini, C., Cherubino, F., Zampogna, E., Azzola, A., Spanevello, A., Schiavone, N., & Chetta, A. (2019). Minimum clinically important difference in 30-s Sit-to-Stand Test after pulmonary rehabilitation in subjects with COPD. Respiratory Care, 64(10), 1261-1269. https://doi.org/10.4187/respcare.06694

Zubieta-Calleja, G., & Zubieta-DeUrioste, N. (2020). Pneumolysis and "silent Hypoxemia" in COVID-19. Indian Journal Clinical Biochemistry, 36(1), 112-116. https://doi.org/10.1007/s12291-020-00935-0

Downloads

Published

2021-12-08

How to Cite

Cancino-López, J., Zarricueta Vergara, P. ., Leyton Dinamarca, B., Figueroa Contreras, P., Miño Cárcamo, , L., Cartagena Ibarra, N., & Soto-Sánchez, J. (2021). Telerehabilitation is Effective to Recover Functionality and Increase Skeletal Muscle Mass Index in COVID-19 Survivors. International Journal of Telerehabilitation, 13(2). https://doi.org/10.5195/ijt.2021.6415

Issue

Section

Clinical Practice - COVID 19