Digital Technology Enablers of Tele-Neurorehabilitation in Pre- and Post-COVID-19 Pandemic Era – A Scoping Review
DOI:
https://doi.org/10.5195/ijt.2024.6611Keywords:
COVID-19, Neurorehabilitation, Telehealth, Telemedicine, Tele-NeurorehabilitationAbstract
Neurorehabilitation (NR), a major component of neurosciences, is the process of restoring a patient’s damaged/disorganized neurological function, through training, therapy, and education, while focusing on patient’s independence and well-being. Since the advent of the COVID-19 pandemic, various applications of telecare and telehealth services surged drastically and became an integral part of current clinical practices. Tele-Neurorehabilitation (TNR) is one of such applications. When rehabilitation services were disrupted globally due to lockdown and travel restrictions, the importance of TNR was recognized, especially in developed, low, and middle-income countries. With exponential deployment of telehealth interventions in neurosciences, TNR has become a distinct stand-alone sub-specialty of neurosciences and telehealth. Digital technologies, such as wearables, robotics, and Virtual Reality (VR) have enabled TNR to improve the quality of patients’ lives. Providing NR remotely using digital technologies and customized digital devices is now a reality, and likely to be the new norm soon. This article provides an overview of the needs, utilization, and deployment of TNR, and focuses on digital technology enablers of TNR in pre- and post- COVID-19 pandemic era.
References
Adams, J. L., Dinesh, K., Xiong, M., Tarolli, C. G., Sharma, S., Sheth, N., Aranyosi, A. J., Zhu, W., Goldenthal, S., Biglan, K. M., Dorsey, E. R., & Sharma, G. (2017). Multiple wearable sensors in Parkinson and Huntington disease individuals: A pilot study in clinic and at home. Digital Biomarkers, 1(1), 52-63. https://doi.org/10.1159/000479018
Alexander, M. (2022). Chapter 1 - Introduction. In M. Alexander (Ed.), Telerehabilitation (pp. 1-3). Elsevier. https://doi.org/10.1016/B978-0-323-82486-6.00001-0
Arpaia, P., Coyle, D., Esposito, A., Natalizio, A., Parvis, M., Pesola, M., & Vallefuoco, E. (2023). Paving the way for motor imagery-based tele-rehabilitation through a fully wearable BCI system. Sensors, 23(13), 5836. https://doi.org/10.3390/s23135836
Asakawa, T., Sugiyama, K., Nozaki, T., Sameshima, T., Kobayashi, S., Wang, L., Hong, Z., Chen, S., Li, C., & Namba, H. (2019). Can the latest computerized technologies revolutionize conventional assessment tools and therapies for a neurological disease? The example of Parkinson's disease. Neurologia Medico-Chirurgica, 59(3), 69-78. https://doi.org/10.2176/nmc.ra.2018-0045
Atashzar, S. F., Carriere, J., & Tavakoli, M. (2021). How can intelligent robots and smart mechatronic modules facilitate remote assessment, assistance, and rehabilitation for isolated adults with neuro-musculoskeletal conditions? Frontiers in Robotics and AI, 8(48). https://doi.org/10.3389/frobt.2021.610529
Block, V. J., Lizée, A., Crabtree-Hartman, E., Bevan, C. J., Graves, J. S., Bove, R., Green, A. J., Nourbakhsh, B., Tremblay, M., Gourraud, P. A., Ng, M. Y., Pletcher, M. J., Olgin, J. E., Marcus, G. M., Allen, D. D., Cree, B. A., & Gelfand, J. M. (2017). Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. Journal of Neurology, 264(2), 316-326. https://doi.org/10.1007/s00415-016-8334-6
Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752-762. https://doi.org/10.1038/nrn3122
Brennan, D., Tindall, L., Theodoros, D., Brown, J., Campbell, M., Christiana, D., Smith, D., Cason, J., & Lee, A. (2010). A blueprint for telerehabilitation guidelines. International Journal of Telerehabilitation, 2(2), 31-34. https://doi.org/10.5195/ijt.2010.6063
Brennan, K., Curran, J., Barlow, A., & Jayaraman, A. (2021). Telerehabilitation in neurorehabilitation: Has it passed the COVID test? Expert Review of Neurotherapeutics, 21(8), 833-836. https://doi.org/10.1080/14737175.2021.1958676
Burgos, P. I., Lara, O., Lavado, A., Rojas-Sepúlveda, I., Delgado, C., Bravo, E., Kamisato, C., Torres, J., Castañeda, V., & Cerda, M. (2020). Exergames and telerehabilitation on smartphones to improve balance in stroke patients. Brain Sciences, 10(11). https://doi.org/10.3390/brainsci10110773
Calabro, R. S. (2021). Teleneurorehabilitation in the COVID-19 era: What are we doing now and what will we do next? Medical Sciences, 9(1), 15. https://doi.org/10.3390/medsci9010015
Canali, S., Schiaffonati, V., & Aliverti, A. (2022). Challenges and recommendations for wearable devices in digital health: Data quality, interoperability, health equity, fairness. PLOS Digital Health, 1(10), e0000104. https://doi.org/10.1371/journal.pdig.0000104
Carignan, C. R., & Krebs, H. I. (2006). Telerehabilitation robotics: Bdright lights, big future? Journal of Rehabilitation Research & Development, 43(5), 695-710. https://doi.org/10.1682/jrrd.2005.05.0085
Caso, V., & Federico, A. (2020). No lockdown for neurological diseases during COVID-19 pandemic infection. Neurological Sciences, 41(5), 999-1001. https://doi.org/10.1007/s10072-020-04389-3
Cerfoglio, S., Capodaglio, P., Rossi, P., Verme, F., Boldini, G., Cvetkova, V., Ruggeri, G., Galli, M., & Cimolin, V. (2023). Tele-rehabilitation interventions for motor symptoms in COVID-19 patients: A narrative review. Bioengineering, 10(6), 650. https://doi.org/10.3390/bioengineering10060650
Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., & Vos, T. (2020). Global estimates of the need for rehabilitation based on the global burden of disease study 2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10267), 2006-2017. https://doi.org/10.1016/S0140-6736(20)32340-0
Cox, N. S., Scrivener, K., Holland, A. E., Jolliffe, L., Wighton, A., Nelson, S., McCredie, L., & Lannin, N. A. (2021). A brief intervention to support implementation of telerehabilitation by community rehabilitation services during COVID-19: A feasibility study. Archives of Physical Medicine and Rehabilitation, 102(4), 789-795. https://doi.org/10.1016/j.apmr.2020.12.007
Cummins, C., Payne, D., & Kayes, N. M. (2022). Governing neurorehabilitation. Disability and Rehabilitation, 44(17), 4921-4928. https://doi.org/10.1080/09638288.2021.1918771
Dobkin, B. H. (2016). Behavioral self-management strategies for practice and exercise should be included in neurologic rehabilitation trials and care. Current Opinion in Neurology, 29(6), 693-699. https://doi.org/10.1097/wco.0000000000000380
Fazekas, G., & Tavaszi, I. (2019). The future role of robots in neuro-rehabilitation. Expert Review of Neurotherapeutics, 19(6), 471-473. https://doi.org/10.1080/14737175.2019.1617700
Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M., & Murray, C. (2020). The global burden of neurological disorders: Translating evidence into policy. The Lancet Neurology, 19(3), 255-265. https://doi.org/10.1016/s1474-4422(19)30411-9
Feintuch, U., Katz, N., Kizony, R., Rand, D., & Weiss, P. L. (2014). Virtual reality applications in neurorehabilitation. In S. Clarke, L. G. Cohen, G. Kwakkel, R. H. Miller, & M. E. Selzer (Eds.), Textbook of Neural Repair and Rehabilitation: Volume 2: Medical Neurorehabilitation (2 ed., Vol. 2, pp. 198-218). Cambridge University Press. https://doi.org/10.1017/CBO9780511995590.021
Galea, M. D. (2019). Telemedicine in rehabilitation. Physical Medicine and Rehabilitation Clinics, 30(2), 473-483. https://doi.org/10.1016/j.pmr.2018.12.002
Ganapathy, K. (2021). Tele-rehabilitation - The time has come. Asian Hospital & Healthcare Management, (53). https://www.asianhhm.com/information-technology/tele-rehabilitation
Garg, D., & Dhamija, R. K. (2020). Teleneurorehabilitation for Parkinson’s disease: A panacea for the times to come? Annals of Indian Academy of Neurology, 23(5), 592-597. https://doi.org/10.4103/aian.AIAN_566_20
Georgiev, D. D., Georgieva, I., Gong, Z., Nanjappan, V., & Georgiev, G. V. (2021). Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sciences, 11(2). https://doi.org/10.3390/brainsci11020221
Glegg, S. M., Holsti, L., Velikonja, D., Ansley, B., Brum, C., & Sartor, D. (2013). Factors influencing therapists' adoption of virtual reality for brain injury rehabilitation. Cyberpsychology, Behavior and Social Networking, 16(5), 385-401. https://doi.org/10.1089/cyber.2013.1506
Goffredo, M., Pagliari, C., Turolla, A., Tassorelli, C., Di Tella, S., Federico, S., Pournajaf, S., Jonsdottir, J., De Icco, R., Pellicciari, L., Calabrò, R. S., Baglio, F., & Franceschini, M. (2023). Non-immersive virtual reality telerehabilitation system improves postural balance in people with chronic neurological diseases. Journal of Clinical Medicine, 12(9), 3178. https://doi.org/10.3390/jcm12093178
Golomb, M. R., McDonald, B. C., Warden, S. J., Yonkman, J., Saykin, A. J., Shirley, B., Huber, M., Rabin, B., AbdelBaky, M., & Nwosu, M. E. (2010). In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Archives of Physical Medicine and Rehabilitation, 91(1), 1-8. https://doi.org/10.1016/j.apmr.2009.08.153
Guo, Q.-F., He, L., Su, W., Tan, H.-X., Han, L.-Y., Gui, C.-F., Chen, Y., Jiang, H.-H., & Gao, Q. (2022). Virtual reality for neurorehabilitation: A bibliometric analysis of knowledge structure and theme trends. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1042618
Gutiérrez, R. O., Galán Del Río, F., Cano de la Cuerda, R., Alguacil Diego, I. M., González, R. A., & Page, J. C. (2013). A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation, 33(4), 545-554. https://doi.org/10.3233/nre-130995
Hidler, J., & Sainburg, R. (2011). Role of robotics in neurorehabilitation. Topics in Spinal Cord Injury Rehabilitation, 17(1), 42-49. https://doi.org/10.1310/sci1701-42
Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: A computational motor learning perspective. Journal of NeuroEngineering and Rehabilitation, 6(1), 5. https://doi.org/10.1186/1743-0003-6-5
Iandolo, R., Marini, F., Semprini, M., Laffranchi, M., Mugnosso, M., Cherif, A., De Michieli, L., Chiappalone, M., & Zenzeri, J. (2019). Perspectives and challenges in robotic neurorehabilitation. Applied Sciences, 9(15), 3183. https://doi.org/10.3390/app9153183
Iodice, F., Romoli, M., Giometto, B., Clerico, M., Tedeschi, G., Bonavita, S., Leocani, L., Lavorgna, L., Digital Technologies, W., & Social Media Study Group of the Italian Society of, N. (2021). Stroke and digital technology: A wake-up call from COVID-19 pandemic. Neurological Sciences, 42(3), 805-809. https://doi.org/10.1007/s10072-020-04993-3
Jagos, H., David, V., Haller, M., Kotzian, S., Hofmann, M., Schlossarek, S., Eichholzer, K., Winkler, M., Frohner, M., Reichel, M., Mayr, W., & Rafolt, D. (2015). A framework for (tele-) monitoring of the rehabilitation progress in stroke patients: Ehealth 2015 special issue. Applied Clinical Informatics Journal, 6(4), 757-768. https://doi.org/10.4338/aci-2015-03-ra-0034
Jeon, H., Lee, W., Park, H., Lee, H. J., Kim, S. K., Kim, H. B., Jeon, B., & Park, K. S. (2017). Automatic classification of tremor severity in Parkinson's disease using a wearable device. Sensors, 17(9). https://doi.org/10.3390/s17092067
Johnson, M. J., & Schmidt, H. (2009). Robot assisted neurological rehabilitation at home: Motivational aspects and concepts for tele-rehabilitation. Public Health Forum, 17(4), 8. https://doi.org/10.1016/j.phf.2009.09.005
Khanna, M., Gowda, G. S., Bagevadi, V. I., Gupta, A., Kulkarni, K., RP, S. S., Basavaraju, V., Ramesh, M. B., Sashidhara, H. N., Manjunatha, N., Channaveerachari, N. K., & Math, S. B. (2018). Feasibility and utility of tele-neurorehabilitation service in India: Experience from a quaternary center. Journal of Neurosciences in Rural Practice, 9(4), 541-544. https://doi.org/10.4103/jnrp.jnrp_104_18
Klaic, M., & Galea, M. P. (2020). Using the technology acceptance model to identify factors that predict likelihood to adopt tele-neurorehabilitation. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.580832
Kuo, C.-Y., Liu, C.-W., Lai, C.-H., Kang, J.-H., Tseng, S.-H., & Su, E. C.-Y. (2021). Prediction of robotic neurorehabilitation functional ambulatory outcome in patients with neurological disorders. Journal of NeuroEngineering and Rehabilitation, 18(1), 174. https://doi.org/10.1186/s12984-021-00965-6
Lambercy, O., Lehner, R., Chua, K., Wee, S. K., Rajeswaran, D. K., Kuah, C. W. K., Ang, W. T., Liang, P., Campolo, D., Hussain, A., Aguirre-Ollinger, G., Guan, C., Kanzler, C. M., Wenderoth, N., & Gassert, R. (2021). Neurorehabilitation from a distance: Can intelligent technology support decentralized access to quality therapy? Frontiers in Robotics and AI, 8(126). https://doi.org/10.3389/frobt.2021.612415
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
Lee, D., & Hwang, S. (2019). Motor imagery on upper extremity function for persons with stroke: A systematic review and meta-analysis. Physical Therapy Rehabilitation Science, 8(1), 52-59. https://doi.org/10.14474/ptrs.2019.8.1.52
Li, Z., Han, X.-G., Sheng, J., & Ma, S.-J. (2016). Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clinical Rehabilitation, 30(5), 432-440. https://doi.org/10.1177/0269215515593611
López-Larraz, E., Montesano, L., Gil-Agudo, Á., Minguez, J., & Oliviero, A. (2015). Evolution of EEG motor rhythms after spinal cord injury: A longitudinal study. PLOS One, 10(7), e0131759. https://doi.org/10.1371/journal.pone.0131759
Maetzler, W., Domingos, J., Srulijes, K., Ferreira, J. J., & Bloem, B. R. (2013). Quantitative wearable sensors for objective assessment of Parkinson's disease. Movement Disorders, 28(12), 1628-1637. https://doi.org/10.1002/mds.25628
Maldonado-Díaz, M., Vargas, P., Vasquez, R., Gonzalez-Seguel, F., Rivero, B., Hidalgo-Cabalín, V., & Gutierrez-Panchana, T. (2021). Teleneurorehabilitation program (virtual reality) for patients with balance disorders: Descriptive study. BMC Sports Science, Medicine and Rehabilitation, 13(1), 83. https://doi.org/10.1186/s13102-021-00314-z
Mancuso, V., Bruni, F., Stramba-Badiale, C., Riva, G., Cipresso, P., & Pedroli, E. (2023). How do emotions elicited in virtual reality affect our memory? A systematic review. Computers in Human Behavior, 146, 107812. https://doi.org/10.1016/j.chb.2023.107812
Mansour, S., Ang, K. K., Nair, K. P., Phua, K. S., & Arvaneh, M. (2022). Efficacy of brain–computer interface and the impact of its design characteristics on poststroke upper-limb rehabilitation: A systematic review and meta-analysis of randomized controlled trials. Clinical EEG and Neuroscience, 53(1), 79-90. https://doi.org/10.1177/15500594211009065
Maresca, G., Maggio, M. G., De Luca, R., Manuli, A., Tonin, P., Pignolo, L., & Calabrò, R. S. (2020). Tele-neuro-rehabilitation in Italy: State of the art and future perspectives. Frontiers in Neurology, 11, 563375. https://doi.org/10.3389/fneur.2020.563375
Massetti, T., da Silva, T. D., Crocetta, T. B., Guarnieri, R., de Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The clinical utility of virtual reality in neurorehabilitation: A systematic review. Journal of Central Nervous System Disease, 10, 1179573518813541. https://doi.org/10.1177/1179573518813541
Matamala-Gomez, M., Bottiroli, S., Realdon, O., Riva, G., Galvagni, L., Platz, T., Sandrini, G., De Icco, R., & Tassorelli, C. (2021). Telemedicine and virtual reality at time of COVID-19 pandemic: An overview for future perspectives in neurorehabilitation. Frontiers in Neurology, 12, 646902. https://doi.org/10.3389/fneur.2021.646902
Matamala-Gomez, M., Maisto, M., Montana, J. I., Mavrodiev, P. A., Baglio, F., Rossetto, F., Mantovani, F., Riva, G., & Realdon, O. (2020). The role of engagement in teleneurorehabilitation: A systematic review. Frontiers in Neurology, 11, 354. https://doi.org/10.3389/fneur.2020.00354
Matthews, D. (2018). Virtual-reality applications give science a new dimension. Nature, 557(7703), 127-128. https://doi.org/10.1038/d41586-018-04997-2
McCue, M., Fairman, A., & Pramuka, M. (2010). Enhancing quality of life through telerehabilitation. Physical Medicine and Rehabilitation Clinics of North America, 21(1), 195-205. https://doi.org/10.1016/j.pmr.2009.07.005
Mobini, A., Behzadipour, S., & Foumani, M. S. (2013). Robotics and tele-rehabilitation: Recent advancements, future trends. International Journal of Reliable and Quality E-Healthcare, 2(4), 1-13. https://doi.org/10.4018/ijrqeh.2013100101
Montana, J. I., Matamala-Gomez, M., Maisto, M., Mavrodiev, P. A., Cavalera, C. M., Diana, B., Mantovani, F., & Realdon, O. (2020). The benefits of emotion regulation interventions in virtual reality for the improvement of wellbeing in adults and older adults: A systematic review. Journal of Clinical Medicine, 9(2), E500. https://doi.org/10.3390/jcm9020500
Mosca, I. E., Salvadori, E., Gerli, F., Fabbri, L., Pancani, S., Lucidi, G., Lombardi, G., Bocchi, L., Pazzi, S., Baglio, F., Vannetti, F., Sorbi, S., & Macchi, C. (2020). Analysis of feasibility, adherence, and appreciation of a newly developed tele-rehabilitation program for people with MCI and VCI. Frontiers in Neurology, 11, 583368-583368. https://doi.org/10.3389/fneur.2020.583368
Motl, R., Pilutti, L., Sandroff, B., Dlugonski, D., Sosnoff, J., & Pula, J. (2013). Accelerometry as a measure of walking behavior in multiple sclerosis. Acta Neurologica Scandinavica, 127(6), 384-390. https://doi.org/10.1111/ane.12036
Mumford, N., Duckworth, J., Thomas, P. R., Shum, D., Williams, G., & Wilson, P. H. (2012). Upper-limb virtual rehabilitation for traumatic brain injury: A preliminary within-group evaluation of the elements system. Brain Injury, 26(2), 166-176. https://doi.org/10.3109/02699052.2011.648706
Neven, A., Vanderstraeten, A., Janssens, D., Wets, G., & Feys, P. (2016). Understanding walking activity in multiple sclerosis: Step count, walking intensity and uninterrupted walking activity duration related to degree of disability. Neurological Sciences, 37, 1483-1490. https://doi.org/10.1007/s10072-016-2609-7
Ng, A. V., & Kent-Braun, J. A. (1997). Quantitation of lower physical activity in persons with multiple sclerosis. Medicine and Science in Sports and Exercise, 29(4), 517-523. https://doi.org/10.1097/00005768-199704000-00014
Nieto-Escamez, F., Cortés-Pérez, I., Obrero-Gaitán, E., & Fusco, A. (2023). Virtual reality applications in neurorehabilitation: Current panorama and challenges. Brain Sciences, 13(5). https://doi.org/10.3390/brainsci13050819
Nijenhuis, S. M., Prange-Lasonder, G. B., Stienen, A. H., Rietman, J. S., & Buurke, J. H. (2017). Effects of training with a passive hand orthosis and games at home in chronic stroke: A pilot randomised controlled trial. Clinical Rehabilitation, 31(2), 207-216. https://doi.org/10.1177/0269215516629722
Nuara, A., Fabbri-Destro, M., Scalona, E., Lenzi, S. E., Rizzolatti, G., & Avanzini, P. (2022). Telerehabilitation in response to constrained physical distance: An opportunity to rethink neurorehabilitative routines. Journal of Neurology, 269(2), 627-638. https://doi.org/10.1007/s00415-021-10397-w
Ona, E. D., Cano-de la Cuerda, R., Sanchez-Herrera, P., Balaguer, C., & Jardon, A. (2018). A review of robotics in neurorehabilitation: Towards an automated process for upper limb. Journal of Healthcare Engineering, 2018, 9758939. https://doi.org/10.1155/2018/9758939
Padfield, N., Camilleri, K., Camilleri, T., Fabri, S., & Bugeja, M. (2022). A comprehensive review of endogenous EEG-based BCIs for dynamic device control. Sensors, 22(15), 5802. https://doi.org/10.3390/s22155802
Paloschi, D., Bravi, M., Schena, E., Miccinilli, S., Morrone, M., Sterzi, S., Saccomandi, P., & Massaroni, C. (2021). Validation and assessment of a posture measurement system with magneto-inertial measurement units. Sensors, 21(19), 6610. https://doi.org/10.3390/s21196610
Park, E., Yun, B. J., Min, Y. S., Lee, Y. S., Moon, S. J., Huh, J. W., Cha, H., Chang, Y., & Jung, T. D. (2019). Effects of a mixed reality-based cognitive training system compared to a conventional computer-assisted cognitive training system on mild cognitive impairment: A pilot study. Cognitive and Behavioral Neurology, 32(3), 172-178. https://doi.org/10.1097/wnn.0000000000000197
Pau, M., Caggiari, S., Mura, A., Corona, F., Leban, B., Coghe, G., Lorefice, L., Marrosu, M. G., & Cocco, E. (2016). Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: Comparison with patient-based measure. Multiple Sclerosis and Related Disorders, 10, 187-191. https://doi.org/10.1016/j.msard.2016.10.007
Pearson, O. R., Busse, M., Van Deursen, R. W. M., & Wiles, C. M. (2004). Quantification of walking mobility in neurological disorders. QJM: An International Journal of Medicine, 97(8), 463-475. https://doi.org/10.1093/qjmed/hch084
Peretti, A., Amenta, F., Tayebati, S. K., Nittari, G., & Mahdi, S. S. (2017). Telerehabilitation: Review of the state-of-the-art and areas of application. JMIR Rehabilitation and Assistive Technologies, 4(2), e7. https://doi.org/10.2196/rehab.7511
Perez-Marcos, D., Bieler-Aeschlimann, M., & Serino, A. (2018). Virtual reality as a vehicle to empower motor-cognitive neurorehabilitation. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02120
Phu, S., Vogrin, S., Al Saedi, A., & Duque, G. (2019). Balance training using virtual reality improves balance and physical performance in older adults at high risk of falls. Clinical Interventions in Aging, 14, 1567-1577. https://doi.org/10.2147/cia.s220890
Porter, M. E., & Heppelmann, J. E. (2017). Why every organization needs an augmented reality strategy. Harvard Business Review - HBR's 10 Must, 85(November-December 2017). https://hbr.org/2017/11/why-every-organization-needs-an-augmented-reality-strategy
Prasad, G., Herman, P., Coyle, D., McDonough, S., & Crosbie, J. (2010). Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study. Journal of NeuroEngineering and Rehabilitation, 7(1), 1-17. https://doi.org/10.1186/1743-0003-7-60
Rau, C.-L., Chen, Y.-P., Lai, J.-S., Chen, S.-C., Kuo, T.-S., Jaw, F.-S., & Luh, J.-J. (2013). Low-cost tele-assessment system for home-based evaluation of reaching ability following stroke. Telemedicine and e-Health, 19(12), 973-978. https://doi.org/10.1089/tmj.2012.0300
Rogante, M., Grigioni, M., Cordella, D., & Giacomozzi, C. (2010). Ten years of telerehabilitation: A literature overview of technologies and clinical applications. NeuroRehabilitation, 27(4), 287-304. https://doi.org/10.3233/NRE-2010-0612
Saladino, M. L., Gualtieri, C., Scaffa, M., Lopatin, M. F., Kohler, E., Bruna, P., Blaya, P., Testa, C., López, G., Reyna, M., Piedrabuena, R., Mercante, S., Barboza, A., & Cáceres, F. J. (2023). Neuro rehabilitation effectiveness based on virtual reality and tele rehabilitation in people with multiple sclerosis in Argentina: Reavitelem study. Multiple Sclerosis and Related Disorders, 70, 104499. https://doi.org/10.1016/j.msard.2023.104499
Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. https://doi.org/10.1038/nrn1651
Semprini, M., Laffranchi, M., Sanguineti, V., Avanzino, L., De Icco, R., De Michieli, L., & Chiappalone, M. (2018). Technological approaches for neurorehabilitation: From robotic devices to brain stimulation and beyond. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00212
Smuck, M., Odonkor, C. A., Wilt, J. K., Schmidt, N., & Swiernik, M. A. (2021). The emerging clinical role of wearables: Factors for successful implementation in healthcare. npj Digital Medicine, 4(1), 45. https://doi.org/10.1038/s41746-021-00418-3
Sosnoff, J., Sandroff, B., Pula, J., Morrison, S., & Motl, R. (2012). Falls and physical activity in persons with multiple sclerosis. Multiple Sclerosis International, 2012. https://doi.org/10.1155/2012/315620
Srivastava, A., Swaminathan, A., Chockalingam, M., Srinivasan, M. K., Surya, N., Ray, P., Hegde, P. S., Akkunje, P. S., Kamble, S., Chitnis, S., Kamalakannan, S., Ganvir, S., & Shah, U. (2021). Tele-neurorehabilitation during the COVID-19 pandemic: Implications for practice in low- and middle-income countries. Frontiers in Neurology, 12, 667925. https://doi.org/10.3389/fneur.2021.667925
Stasolla, F., Lopez, A., Akbar, K., Vinci, L. A., & Cusano, M. (2023). Matching assistive technology, telerehabilitation, and virtual reality to promote cognitive rehabilitation and communication skills in neurological populations: A perspective proposal. Technologies, 11(2), 43. https://doi.org/10.3390/technologies11020043
Suppa, A., Kita, A., Leodori, G., Zampogna, A., Nicolini, E., Lorenzi, P., Rao, R., & Irrera, F. (2017). L-dopa and freezing of gait in Parkinson's disease: Objective assessment through a wearable wireless system. Frontiers in Neurology, 8, 406. https://doi.org/10.3389/fneur.2017.00406
Tressoldi, P. E., Brembati, F., Donini, R., Iozzino, R., & Vio, C. (2012). Treatment of dyslexia in a regular orthography: Efficacy and efficiency (cost-effectiveness) comparison between home vs clinic-based treatments. Europe’s Journal of Psychology, 8(3), 375-390. https://doi.org/10.5964/ejop.v8i3.442
Truijen, S., Abdullahi, A., Bijsterbosch, D., van Zoest, E., Conijn, M., Wang, Y., Struyf, N., & Saeys, W. (2022). Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurological Sciences, 43(5), 2995-3006. https://doi.org/10.1007/s10072-021-05855-2
Tulsulkar, G., Mishra, N., Thalmann, N. M., Lim, H. E., Lee, M. P., & Cheng, S. K. (2021). Can a humanoid social robot stimulate the interactivity of cognitively impaired elderly? A thorough study based on computer vision methods. The Visual Computer, 37(12), 3019-3038. https://doi.org/10.1007/s00371-021-02242-y
Ustinova, K. I., Perkins, J., Leonard, W. A., & Hausbeck, C. J. (2014). Virtual reality game-based therapy for treatment of postural and co-ordination abnormalities secondary to TBI: A pilot study. Brain Injury, 28(4), 486-495. https://doi.org/10.3109/02699052.2014.888593
Ventura, S., Brivio, E., Riva, G., & Baños, R. M. (2019). Immersive versus non-immersive experience: Exploring the feasibility of memory assessment through 360° technology. Frontiers in Psychology, 10, 2509. https://doi.org/10.3389/fpsyg.2019.02509
Voinescu, A., Sui, J., & Stanton Fraser, D. (2021). Virtual reality in neurorehabilitation: An umbrella review of meta-analyses. Journal of Clinical Medicine, 10(7), 1478. https://doi.org/10.3390/jcm10071478
Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). New evidence for gait abnormalities among parkinson's disease patients who suffer from freezing of gait: Insights using a body-fixed sensor worn for 3 days. Journal of Neural Transmission, 122(3), 403-410. https://doi.org/10.1007/s00702-014-1279-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mohy Uddin, Krishnan Ganapathy, Shabbir Syed-Abdul
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.