Digital Technology Enablers of Tele-Neurorehabilitation in Pre- and Post-COVID-19 Pandemic Era – A Scoping Review

Authors

  • Mohy Uddin Research Quality Management Section, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
  • Krishnan Ganapathy Distinguished Visiting Professor IIT Kanpur & Director Apollo Telemedicine Networking Foundation, India
  • Shabbir Syed-Abdul Taipei Medical University

DOI:

https://doi.org/10.5195/ijt.2024.6611

Keywords:

COVID-19, Neurorehabilitation, Telehealth, Telemedicine, Tele-Neurorehabilitation

Abstract

 

Neurorehabilitation (NR), a major component of neurosciences, is the process of restoring a patient’s damaged/disorganized neurological function, through training, therapy, and education, while focusing on patient’s independence and well-being. Since the advent of the COVID-19 pandemic, various applications of telecare and telehealth services surged drastically and became an integral part of current clinical practices. Tele-Neurorehabilitation (TNR) is one of such applications. When rehabilitation services were disrupted globally due to lockdown and travel restrictions, the importance of TNR was recognized, especially in developed, low, and middle-income countries. With exponential deployment of telehealth interventions in neurosciences, TNR has become a distinct stand-alone sub-specialty of neurosciences and telehealth. Digital technologies, such as wearables, robotics, and Virtual Reality (VR) have enabled TNR to improve the quality of patients’ lives. Providing NR remotely using digital technologies and customized digital devices is now a reality, and likely to be the new norm soon. This article provides an overview of the needs, utilization, and deployment of TNR, and focuses on digital technology enablers of TNR in pre- and post- COVID-19 pandemic era.

  

References

Adams, J. L., Dinesh, K., Xiong, M., Tarolli, C. G., Sharma, S., Sheth, N., Aranyosi, A. J., Zhu, W., Goldenthal, S., Biglan, K. M., Dorsey, E. R., & Sharma, G. (2017). Multiple wearable sensors in Parkinson and Huntington disease individuals: A pilot study in clinic and at home. Digital Biomarkers, 1(1), 52-63. https://doi.org/10.1159/000479018

Alexander, M. (2022). Chapter 1 - Introduction. In M. Alexander (Ed.), Telerehabilitation (pp. 1-3). Elsevier. https://doi.org/10.1016/B978-0-323-82486-6.00001-0

Arpaia, P., Coyle, D., Esposito, A., Natalizio, A., Parvis, M., Pesola, M., & Vallefuoco, E. (2023). Paving the way for motor imagery-based tele-rehabilitation through a fully wearable BCI system. Sensors, 23(13), 5836. https://doi.org/10.3390/s23135836

Asakawa, T., Sugiyama, K., Nozaki, T., Sameshima, T., Kobayashi, S., Wang, L., Hong, Z., Chen, S., Li, C., & Namba, H. (2019). Can the latest computerized technologies revolutionize conventional assessment tools and therapies for a neurological disease? The example of Parkinson's disease. Neurologia Medico-Chirurgica, 59(3), 69-78. https://doi.org/10.2176/nmc.ra.2018-0045

Atashzar, S. F., Carriere, J., & Tavakoli, M. (2021). How can intelligent robots and smart mechatronic modules facilitate remote assessment, assistance, and rehabilitation for isolated adults with neuro-musculoskeletal conditions? Frontiers in Robotics and AI, 8(48). https://doi.org/10.3389/frobt.2021.610529

Block, V. J., Lizée, A., Crabtree-Hartman, E., Bevan, C. J., Graves, J. S., Bove, R., Green, A. J., Nourbakhsh, B., Tremblay, M., Gourraud, P. A., Ng, M. Y., Pletcher, M. J., Olgin, J. E., Marcus, G. M., Allen, D. D., Cree, B. A., & Gelfand, J. M. (2017). Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. Journal of Neurology, 264(2), 316-326. https://doi.org/10.1007/s00415-016-8334-6

Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752-762. https://doi.org/10.1038/nrn3122

Brennan, D., Tindall, L., Theodoros, D., Brown, J., Campbell, M., Christiana, D., Smith, D., Cason, J., & Lee, A. (2010). A blueprint for telerehabilitation guidelines. International Journal of Telerehabilitation, 2(2), 31-34. https://doi.org/10.5195/ijt.2010.6063

Brennan, K., Curran, J., Barlow, A., & Jayaraman, A. (2021). Telerehabilitation in neurorehabilitation: Has it passed the COVID test? Expert Review of Neurotherapeutics, 21(8), 833-836. https://doi.org/10.1080/14737175.2021.1958676

Burgos, P. I., Lara, O., Lavado, A., Rojas-Sepúlveda, I., Delgado, C., Bravo, E., Kamisato, C., Torres, J., Castañeda, V., & Cerda, M. (2020). Exergames and telerehabilitation on smartphones to improve balance in stroke patients. Brain Sciences, 10(11). https://doi.org/10.3390/brainsci10110773

Calabro, R. S. (2021). Teleneurorehabilitation in the COVID-19 era: What are we doing now and what will we do next? Medical Sciences, 9(1), 15. https://doi.org/10.3390/medsci9010015

Canali, S., Schiaffonati, V., & Aliverti, A. (2022). Challenges and recommendations for wearable devices in digital health: Data quality, interoperability, health equity, fairness. PLOS Digital Health, 1(10), e0000104. https://doi.org/10.1371/journal.pdig.0000104

Carignan, C. R., & Krebs, H. I. (2006). Telerehabilitation robotics: Bdright lights, big future? Journal of Rehabilitation Research & Development, 43(5), 695-710. https://doi.org/10.1682/jrrd.2005.05.0085

Caso, V., & Federico, A. (2020). No lockdown for neurological diseases during COVID-19 pandemic infection. Neurological Sciences, 41(5), 999-1001. https://doi.org/10.1007/s10072-020-04389-3

Cerfoglio, S., Capodaglio, P., Rossi, P., Verme, F., Boldini, G., Cvetkova, V., Ruggeri, G., Galli, M., & Cimolin, V. (2023). Tele-rehabilitation interventions for motor symptoms in COVID-19 patients: A narrative review. Bioengineering, 10(6), 650. https://doi.org/10.3390/bioengineering10060650

Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., & Vos, T. (2020). Global estimates of the need for rehabilitation based on the global burden of disease study 2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10267), 2006-2017. https://doi.org/10.1016/S0140-6736(20)32340-0

Cox, N. S., Scrivener, K., Holland, A. E., Jolliffe, L., Wighton, A., Nelson, S., McCredie, L., & Lannin, N. A. (2021). A brief intervention to support implementation of telerehabilitation by community rehabilitation services during COVID-19: A feasibility study. Archives of Physical Medicine and Rehabilitation, 102(4), 789-795. https://doi.org/10.1016/j.apmr.2020.12.007

Cummins, C., Payne, D., & Kayes, N. M. (2022). Governing neurorehabilitation. Disability and Rehabilitation, 44(17), 4921-4928. https://doi.org/10.1080/09638288.2021.1918771

Dobkin, B. H. (2016). Behavioral self-management strategies for practice and exercise should be included in neurologic rehabilitation trials and care. Current Opinion in Neurology, 29(6), 693-699. https://doi.org/10.1097/wco.0000000000000380

Fazekas, G., & Tavaszi, I. (2019). The future role of robots in neuro-rehabilitation. Expert Review of Neurotherapeutics, 19(6), 471-473. https://doi.org/10.1080/14737175.2019.1617700

Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M., & Murray, C. (2020). The global burden of neurological disorders: Translating evidence into policy. The Lancet Neurology, 19(3), 255-265. https://doi.org/10.1016/s1474-4422(19)30411-9

Feintuch, U., Katz, N., Kizony, R., Rand, D., & Weiss, P. L. (2014). Virtual reality applications in neurorehabilitation. In S. Clarke, L. G. Cohen, G. Kwakkel, R. H. Miller, & M. E. Selzer (Eds.), Textbook of Neural Repair and Rehabilitation: Volume 2: Medical Neurorehabilitation (2 ed., Vol. 2, pp. 198-218). Cambridge University Press. https://doi.org/10.1017/CBO9780511995590.021

Galea, M. D. (2019). Telemedicine in rehabilitation. Physical Medicine and Rehabilitation Clinics, 30(2), 473-483. https://doi.org/10.1016/j.pmr.2018.12.002

Ganapathy, K. (2021). Tele-rehabilitation - The time has come. Asian Hospital & Healthcare Management, (53). https://www.asianhhm.com/information-technology/tele-rehabilitation

Garg, D., & Dhamija, R. K. (2020). Teleneurorehabilitation for Parkinson’s disease: A panacea for the times to come? Annals of Indian Academy of Neurology, 23(5), 592-597. https://doi.org/10.4103/aian.AIAN_566_20

Georgiev, D. D., Georgieva, I., Gong, Z., Nanjappan, V., & Georgiev, G. V. (2021). Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sciences, 11(2). https://doi.org/10.3390/brainsci11020221

Glegg, S. M., Holsti, L., Velikonja, D., Ansley, B., Brum, C., & Sartor, D. (2013). Factors influencing therapists' adoption of virtual reality for brain injury rehabilitation. Cyberpsychology, Behavior and Social Networking, 16(5), 385-401. https://doi.org/10.1089/cyber.2013.1506

Goffredo, M., Pagliari, C., Turolla, A., Tassorelli, C., Di Tella, S., Federico, S., Pournajaf, S., Jonsdottir, J., De Icco, R., Pellicciari, L., Calabrò, R. S., Baglio, F., & Franceschini, M. (2023). Non-immersive virtual reality telerehabilitation system improves postural balance in people with chronic neurological diseases. Journal of Clinical Medicine, 12(9), 3178. https://doi.org/10.3390/jcm12093178

Golomb, M. R., McDonald, B. C., Warden, S. J., Yonkman, J., Saykin, A. J., Shirley, B., Huber, M., Rabin, B., AbdelBaky, M., & Nwosu, M. E. (2010). In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Archives of Physical Medicine and Rehabilitation, 91(1), 1-8. https://doi.org/10.1016/j.apmr.2009.08.153

Guo, Q.-F., He, L., Su, W., Tan, H.-X., Han, L.-Y., Gui, C.-F., Chen, Y., Jiang, H.-H., & Gao, Q. (2022). Virtual reality for neurorehabilitation: A bibliometric analysis of knowledge structure and theme trends. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1042618

Gutiérrez, R. O., Galán Del Río, F., Cano de la Cuerda, R., Alguacil Diego, I. M., González, R. A., & Page, J. C. (2013). A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation, 33(4), 545-554. https://doi.org/10.3233/nre-130995

Hidler, J., & Sainburg, R. (2011). Role of robotics in neurorehabilitation. Topics in Spinal Cord Injury Rehabilitation, 17(1), 42-49. https://doi.org/10.1310/sci1701-42

Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: A computational motor learning perspective. Journal of NeuroEngineering and Rehabilitation, 6(1), 5. https://doi.org/10.1186/1743-0003-6-5

Iandolo, R., Marini, F., Semprini, M., Laffranchi, M., Mugnosso, M., Cherif, A., De Michieli, L., Chiappalone, M., & Zenzeri, J. (2019). Perspectives and challenges in robotic neurorehabilitation. Applied Sciences, 9(15), 3183. https://doi.org/10.3390/app9153183

Iodice, F., Romoli, M., Giometto, B., Clerico, M., Tedeschi, G., Bonavita, S., Leocani, L., Lavorgna, L., Digital Technologies, W., & Social Media Study Group of the Italian Society of, N. (2021). Stroke and digital technology: A wake-up call from COVID-19 pandemic. Neurological Sciences, 42(3), 805-809. https://doi.org/10.1007/s10072-020-04993-3

Jagos, H., David, V., Haller, M., Kotzian, S., Hofmann, M., Schlossarek, S., Eichholzer, K., Winkler, M., Frohner, M., Reichel, M., Mayr, W., & Rafolt, D. (2015). A framework for (tele-) monitoring of the rehabilitation progress in stroke patients: Ehealth 2015 special issue. Applied Clinical Informatics Journal, 6(4), 757-768. https://doi.org/10.4338/aci-2015-03-ra-0034

Jeon, H., Lee, W., Park, H., Lee, H. J., Kim, S. K., Kim, H. B., Jeon, B., & Park, K. S. (2017). Automatic classification of tremor severity in Parkinson's disease using a wearable device. Sensors, 17(9). https://doi.org/10.3390/s17092067

Johnson, M. J., & Schmidt, H. (2009). Robot assisted neurological rehabilitation at home: Motivational aspects and concepts for tele-rehabilitation. Public Health Forum, 17(4), 8. https://doi.org/10.1016/j.phf.2009.09.005

Khanna, M., Gowda, G. S., Bagevadi, V. I., Gupta, A., Kulkarni, K., RP, S. S., Basavaraju, V., Ramesh, M. B., Sashidhara, H. N., Manjunatha, N., Channaveerachari, N. K., & Math, S. B. (2018). Feasibility and utility of tele-neurorehabilitation service in India: Experience from a quaternary center. Journal of Neurosciences in Rural Practice, 9(4), 541-544. https://doi.org/10.4103/jnrp.jnrp_104_18

Klaic, M., & Galea, M. P. (2020). Using the technology acceptance model to identify factors that predict likelihood to adopt tele-neurorehabilitation. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.580832

Kuo, C.-Y., Liu, C.-W., Lai, C.-H., Kang, J.-H., Tseng, S.-H., & Su, E. C.-Y. (2021). Prediction of robotic neurorehabilitation functional ambulatory outcome in patients with neurological disorders. Journal of NeuroEngineering and Rehabilitation, 18(1), 174. https://doi.org/10.1186/s12984-021-00965-6

Lambercy, O., Lehner, R., Chua, K., Wee, S. K., Rajeswaran, D. K., Kuah, C. W. K., Ang, W. T., Liang, P., Campolo, D., Hussain, A., Aguirre-Ollinger, G., Guan, C., Kanzler, C. M., Wenderoth, N., & Gassert, R. (2021). Neurorehabilitation from a distance: Can intelligent technology support decentralized access to quality therapy? Frontiers in Robotics and AI, 8(126). https://doi.org/10.3389/frobt.2021.612415

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310

Lee, D., & Hwang, S. (2019). Motor imagery on upper extremity function for persons with stroke: A systematic review and meta-analysis. Physical Therapy Rehabilitation Science, 8(1), 52-59. https://doi.org/10.14474/ptrs.2019.8.1.52

Li, Z., Han, X.-G., Sheng, J., & Ma, S.-J. (2016). Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clinical Rehabilitation, 30(5), 432-440. https://doi.org/10.1177/0269215515593611

López-Larraz, E., Montesano, L., Gil-Agudo, Á., Minguez, J., & Oliviero, A. (2015). Evolution of EEG motor rhythms after spinal cord injury: A longitudinal study. PLOS One, 10(7), e0131759. https://doi.org/10.1371/journal.pone.0131759

Maetzler, W., Domingos, J., Srulijes, K., Ferreira, J. J., & Bloem, B. R. (2013). Quantitative wearable sensors for objective assessment of Parkinson's disease. Movement Disorders, 28(12), 1628-1637. https://doi.org/10.1002/mds.25628

Maldonado-Díaz, M., Vargas, P., Vasquez, R., Gonzalez-Seguel, F., Rivero, B., Hidalgo-Cabalín, V., & Gutierrez-Panchana, T. (2021). Teleneurorehabilitation program (virtual reality) for patients with balance disorders: Descriptive study. BMC Sports Science, Medicine and Rehabilitation, 13(1), 83. https://doi.org/10.1186/s13102-021-00314-z

Mancuso, V., Bruni, F., Stramba-Badiale, C., Riva, G., Cipresso, P., & Pedroli, E. (2023). How do emotions elicited in virtual reality affect our memory? A systematic review. Computers in Human Behavior, 146, 107812. https://doi.org/10.1016/j.chb.2023.107812

Mansour, S., Ang, K. K., Nair, K. P., Phua, K. S., & Arvaneh, M. (2022). Efficacy of brain–computer interface and the impact of its design characteristics on poststroke upper-limb rehabilitation: A systematic review and meta-analysis of randomized controlled trials. Clinical EEG and Neuroscience, 53(1), 79-90. https://doi.org/10.1177/15500594211009065

Maresca, G., Maggio, M. G., De Luca, R., Manuli, A., Tonin, P., Pignolo, L., & Calabrò, R. S. (2020). Tele-neuro-rehabilitation in Italy: State of the art and future perspectives. Frontiers in Neurology, 11, 563375. https://doi.org/10.3389/fneur.2020.563375

Massetti, T., da Silva, T. D., Crocetta, T. B., Guarnieri, R., de Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The clinical utility of virtual reality in neurorehabilitation: A systematic review. Journal of Central Nervous System Disease, 10, 1179573518813541. https://doi.org/10.1177/1179573518813541

Matamala-Gomez, M., Bottiroli, S., Realdon, O., Riva, G., Galvagni, L., Platz, T., Sandrini, G., De Icco, R., & Tassorelli, C. (2021). Telemedicine and virtual reality at time of COVID-19 pandemic: An overview for future perspectives in neurorehabilitation. Frontiers in Neurology, 12, 646902. https://doi.org/10.3389/fneur.2021.646902

Matamala-Gomez, M., Maisto, M., Montana, J. I., Mavrodiev, P. A., Baglio, F., Rossetto, F., Mantovani, F., Riva, G., & Realdon, O. (2020). The role of engagement in teleneurorehabilitation: A systematic review. Frontiers in Neurology, 11, 354. https://doi.org/10.3389/fneur.2020.00354

Matthews, D. (2018). Virtual-reality applications give science a new dimension. Nature, 557(7703), 127-128. https://doi.org/10.1038/d41586-018-04997-2

McCue, M., Fairman, A., & Pramuka, M. (2010). Enhancing quality of life through telerehabilitation. Physical Medicine and Rehabilitation Clinics of North America, 21(1), 195-205. https://doi.org/10.1016/j.pmr.2009.07.005

Mobini, A., Behzadipour, S., & Foumani, M. S. (2013). Robotics and tele-rehabilitation: Recent advancements, future trends. International Journal of Reliable and Quality E-Healthcare, 2(4), 1-13. https://doi.org/10.4018/ijrqeh.2013100101

Montana, J. I., Matamala-Gomez, M., Maisto, M., Mavrodiev, P. A., Cavalera, C. M., Diana, B., Mantovani, F., & Realdon, O. (2020). The benefits of emotion regulation interventions in virtual reality for the improvement of wellbeing in adults and older adults: A systematic review. Journal of Clinical Medicine, 9(2), E500. https://doi.org/10.3390/jcm9020500

Mosca, I. E., Salvadori, E., Gerli, F., Fabbri, L., Pancani, S., Lucidi, G., Lombardi, G., Bocchi, L., Pazzi, S., Baglio, F., Vannetti, F., Sorbi, S., & Macchi, C. (2020). Analysis of feasibility, adherence, and appreciation of a newly developed tele-rehabilitation program for people with MCI and VCI. Frontiers in Neurology, 11, 583368-583368. https://doi.org/10.3389/fneur.2020.583368

Motl, R., Pilutti, L., Sandroff, B., Dlugonski, D., Sosnoff, J., & Pula, J. (2013). Accelerometry as a measure of walking behavior in multiple sclerosis. Acta Neurologica Scandinavica, 127(6), 384-390. https://doi.org/10.1111/ane.12036

Mumford, N., Duckworth, J., Thomas, P. R., Shum, D., Williams, G., & Wilson, P. H. (2012). Upper-limb virtual rehabilitation for traumatic brain injury: A preliminary within-group evaluation of the elements system. Brain Injury, 26(2), 166-176. https://doi.org/10.3109/02699052.2011.648706

Neven, A., Vanderstraeten, A., Janssens, D., Wets, G., & Feys, P. (2016). Understanding walking activity in multiple sclerosis: Step count, walking intensity and uninterrupted walking activity duration related to degree of disability. Neurological Sciences, 37, 1483-1490. https://doi.org/10.1007/s10072-016-2609-7

Ng, A. V., & Kent-Braun, J. A. (1997). Quantitation of lower physical activity in persons with multiple sclerosis. Medicine and Science in Sports and Exercise, 29(4), 517-523. https://doi.org/10.1097/00005768-199704000-00014

Nieto-Escamez, F., Cortés-Pérez, I., Obrero-Gaitán, E., & Fusco, A. (2023). Virtual reality applications in neurorehabilitation: Current panorama and challenges. Brain Sciences, 13(5). https://doi.org/10.3390/brainsci13050819

Nijenhuis, S. M., Prange-Lasonder, G. B., Stienen, A. H., Rietman, J. S., & Buurke, J. H. (2017). Effects of training with a passive hand orthosis and games at home in chronic stroke: A pilot randomised controlled trial. Clinical Rehabilitation, 31(2), 207-216. https://doi.org/10.1177/0269215516629722

Nuara, A., Fabbri-Destro, M., Scalona, E., Lenzi, S. E., Rizzolatti, G., & Avanzini, P. (2022). Telerehabilitation in response to constrained physical distance: An opportunity to rethink neurorehabilitative routines. Journal of Neurology, 269(2), 627-638. https://doi.org/10.1007/s00415-021-10397-w

Ona, E. D., Cano-de la Cuerda, R., Sanchez-Herrera, P., Balaguer, C., & Jardon, A. (2018). A review of robotics in neurorehabilitation: Towards an automated process for upper limb. Journal of Healthcare Engineering, 2018, 9758939. https://doi.org/10.1155/2018/9758939

Padfield, N., Camilleri, K., Camilleri, T., Fabri, S., & Bugeja, M. (2022). A comprehensive review of endogenous EEG-based BCIs for dynamic device control. Sensors, 22(15), 5802. https://doi.org/10.3390/s22155802

Paloschi, D., Bravi, M., Schena, E., Miccinilli, S., Morrone, M., Sterzi, S., Saccomandi, P., & Massaroni, C. (2021). Validation and assessment of a posture measurement system with magneto-inertial measurement units. Sensors, 21(19), 6610. https://doi.org/10.3390/s21196610

Park, E., Yun, B. J., Min, Y. S., Lee, Y. S., Moon, S. J., Huh, J. W., Cha, H., Chang, Y., & Jung, T. D. (2019). Effects of a mixed reality-based cognitive training system compared to a conventional computer-assisted cognitive training system on mild cognitive impairment: A pilot study. Cognitive and Behavioral Neurology, 32(3), 172-178. https://doi.org/10.1097/wnn.0000000000000197

Pau, M., Caggiari, S., Mura, A., Corona, F., Leban, B., Coghe, G., Lorefice, L., Marrosu, M. G., & Cocco, E. (2016). Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: Comparison with patient-based measure. Multiple Sclerosis and Related Disorders, 10, 187-191. https://doi.org/10.1016/j.msard.2016.10.007

Pearson, O. R., Busse, M., Van Deursen, R. W. M., & Wiles, C. M. (2004). Quantification of walking mobility in neurological disorders. QJM: An International Journal of Medicine, 97(8), 463-475. https://doi.org/10.1093/qjmed/hch084

Peretti, A., Amenta, F., Tayebati, S. K., Nittari, G., & Mahdi, S. S. (2017). Telerehabilitation: Review of the state-of-the-art and areas of application. JMIR Rehabilitation and Assistive Technologies, 4(2), e7. https://doi.org/10.2196/rehab.7511

Perez-Marcos, D., Bieler-Aeschlimann, M., & Serino, A. (2018). Virtual reality as a vehicle to empower motor-cognitive neurorehabilitation. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02120

Phu, S., Vogrin, S., Al Saedi, A., & Duque, G. (2019). Balance training using virtual reality improves balance and physical performance in older adults at high risk of falls. Clinical Interventions in Aging, 14, 1567-1577. https://doi.org/10.2147/cia.s220890

Porter, M. E., & Heppelmann, J. E. (2017). Why every organization needs an augmented reality strategy. Harvard Business Review - HBR's 10 Must, 85(November-December 2017). https://hbr.org/2017/11/why-every-organization-needs-an-augmented-reality-strategy

Prasad, G., Herman, P., Coyle, D., McDonough, S., & Crosbie, J. (2010). Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study. Journal of NeuroEngineering and Rehabilitation, 7(1), 1-17. https://doi.org/10.1186/1743-0003-7-60

Rau, C.-L., Chen, Y.-P., Lai, J.-S., Chen, S.-C., Kuo, T.-S., Jaw, F.-S., & Luh, J.-J. (2013). Low-cost tele-assessment system for home-based evaluation of reaching ability following stroke. Telemedicine and e-Health, 19(12), 973-978. https://doi.org/10.1089/tmj.2012.0300

Rogante, M., Grigioni, M., Cordella, D., & Giacomozzi, C. (2010). Ten years of telerehabilitation: A literature overview of technologies and clinical applications. NeuroRehabilitation, 27(4), 287-304. https://doi.org/10.3233/NRE-2010-0612

Saladino, M. L., Gualtieri, C., Scaffa, M., Lopatin, M. F., Kohler, E., Bruna, P., Blaya, P., Testa, C., López, G., Reyna, M., Piedrabuena, R., Mercante, S., Barboza, A., & Cáceres, F. J. (2023). Neuro rehabilitation effectiveness based on virtual reality and tele rehabilitation in people with multiple sclerosis in Argentina: Reavitelem study. Multiple Sclerosis and Related Disorders, 70, 104499. https://doi.org/10.1016/j.msard.2023.104499

Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. https://doi.org/10.1038/nrn1651

Semprini, M., Laffranchi, M., Sanguineti, V., Avanzino, L., De Icco, R., De Michieli, L., & Chiappalone, M. (2018). Technological approaches for neurorehabilitation: From robotic devices to brain stimulation and beyond. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00212

Smuck, M., Odonkor, C. A., Wilt, J. K., Schmidt, N., & Swiernik, M. A. (2021). The emerging clinical role of wearables: Factors for successful implementation in healthcare. npj Digital Medicine, 4(1), 45. https://doi.org/10.1038/s41746-021-00418-3

Sosnoff, J., Sandroff, B., Pula, J., Morrison, S., & Motl, R. (2012). Falls and physical activity in persons with multiple sclerosis. Multiple Sclerosis International, 2012. https://doi.org/10.1155/2012/315620

Srivastava, A., Swaminathan, A., Chockalingam, M., Srinivasan, M. K., Surya, N., Ray, P., Hegde, P. S., Akkunje, P. S., Kamble, S., Chitnis, S., Kamalakannan, S., Ganvir, S., & Shah, U. (2021). Tele-neurorehabilitation during the COVID-19 pandemic: Implications for practice in low- and middle-income countries. Frontiers in Neurology, 12, 667925. https://doi.org/10.3389/fneur.2021.667925

Stasolla, F., Lopez, A., Akbar, K., Vinci, L. A., & Cusano, M. (2023). Matching assistive technology, telerehabilitation, and virtual reality to promote cognitive rehabilitation and communication skills in neurological populations: A perspective proposal. Technologies, 11(2), 43. https://doi.org/10.3390/technologies11020043

Suppa, A., Kita, A., Leodori, G., Zampogna, A., Nicolini, E., Lorenzi, P., Rao, R., & Irrera, F. (2017). L-dopa and freezing of gait in Parkinson's disease: Objective assessment through a wearable wireless system. Frontiers in Neurology, 8, 406. https://doi.org/10.3389/fneur.2017.00406

Tressoldi, P. E., Brembati, F., Donini, R., Iozzino, R., & Vio, C. (2012). Treatment of dyslexia in a regular orthography: Efficacy and efficiency (cost-effectiveness) comparison between home vs clinic-based treatments. Europe’s Journal of Psychology, 8(3), 375-390. https://doi.org/10.5964/ejop.v8i3.442

Truijen, S., Abdullahi, A., Bijsterbosch, D., van Zoest, E., Conijn, M., Wang, Y., Struyf, N., & Saeys, W. (2022). Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurological Sciences, 43(5), 2995-3006. https://doi.org/10.1007/s10072-021-05855-2

Tulsulkar, G., Mishra, N., Thalmann, N. M., Lim, H. E., Lee, M. P., & Cheng, S. K. (2021). Can a humanoid social robot stimulate the interactivity of cognitively impaired elderly? A thorough study based on computer vision methods. The Visual Computer, 37(12), 3019-3038. https://doi.org/10.1007/s00371-021-02242-y

Ustinova, K. I., Perkins, J., Leonard, W. A., & Hausbeck, C. J. (2014). Virtual reality game-based therapy for treatment of postural and co-ordination abnormalities secondary to TBI: A pilot study. Brain Injury, 28(4), 486-495. https://doi.org/10.3109/02699052.2014.888593

Ventura, S., Brivio, E., Riva, G., & Baños, R. M. (2019). Immersive versus non-immersive experience: Exploring the feasibility of memory assessment through 360° technology. Frontiers in Psychology, 10, 2509. https://doi.org/10.3389/fpsyg.2019.02509

Voinescu, A., Sui, J., & Stanton Fraser, D. (2021). Virtual reality in neurorehabilitation: An umbrella review of meta-analyses. Journal of Clinical Medicine, 10(7), 1478. https://doi.org/10.3390/jcm10071478

Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). New evidence for gait abnormalities among parkinson's disease patients who suffer from freezing of gait: Insights using a body-fixed sensor worn for 3 days. Journal of Neural Transmission, 122(3), 403-410. https://doi.org/10.1007/s00702-014-1279-y

Downloads

Published

2024-06-28

How to Cite

Uddin, M., Ganapathy, K., & Syed-Abdul, S. (2024). Digital Technology Enablers of Tele-Neurorehabilitation in Pre- and Post-COVID-19 Pandemic Era – A Scoping Review. International Journal of Telerehabilitation, 16(1). https://doi.org/10.5195/ijt.2024.6611

Issue

Section

COVID-19